Table of Contents
Note: For greater readability, the conventional highlighting for new material. has not been applied to the whole chapter.
To represent data at scattered locations and times with no implied relationship among of coordinate positions, both data and coordinates must share the same (sample) instance dimension. Because each feature contains only a single data element, there is no need for a separate element dimension. The representation of point features is a special, degenerate case of the standard four representations. The coordinates
attribute is used on the data variables to unambiguously identify the relevant space and time auxiliary coordinate variables.
Example H.1. Point data.
dimensions: obs = 1234 ; variables: double time(obs) ; time:standard_name = “time”; time:long_name = "time of measurement" ; time:units = "days since 1970-01-01 00:00:00" ; float lon(obs) ; lon:standard_name = "longitude"; lon:long_name = "longitude of the observation"; lon:units = "degrees_east"; float lat(obs) ; lat:standard_name = "latitude"; lat:long_name = "latitude of the observation" ; lat:units = "degrees_north" ; float alt(obs) ; alt:long_name = "vertical distance above the surface" ; alt:standard_name = "height" ; alt:units = "m"; alt:positive = "up"; alt:axis = "Z"; float humidity(obs) ; humidity:standard_name = "specific_humidity" ; humidity:coordinates = "time lat lon alt" ; float temp(obs) ; temp:standard_name = "air_temperature" ; temp:units = "Celsius" ; temp:coordinates = "time lat lon alt" ; attributes: :featureType = "point";
In this example, the humidity(i) and temp(i) data are associated with the coordinate values time(i), lat(i), lon(i), and alt(i). The obs dimension may optionally be the netCDF unlimited dimension of the netCDF file.