Table of Contents

H.1. Point Data
H.2. Time Series Data
H.2.1. Orthogonal multidimensional array representation of time series
H.2.2. Incomplete multidimensional array representation of time series
H.2.3. Single time series, including deviations from a nominal fixed spatial location
H.2.4. Contiguous ragged array representation of time series
H.2.5. Indexed ragged array representation of time series
H.3. Profile Data
H.3.1. Orthogonal multidimensional array representation of profiles
H.3.2. Incomplete multidimensional array representation of profiles
H.3.3. Single profile
H.3.4. Contiguous ragged array representation of profiles
H.3.5. Indexed ragged array representation of profiles
H.4. Trajectory Data
H.4.1. Multidimensional array representation of trajectories
H.4.2. Single trajectory
H.4.3. Contiguous ragged array representation of trajectories
H.4.4. Indexed ragged array representation of trajectories
H.5. Time Series of Profiles
H.5.1. Multidimensional array representations of time series profiles
H.5.2. Time series of profiles at a single station
H.5.3. Ragged array representation of time series profiles
H.6. Trajectory of Profiles
H.6.1. Multidimensional array representation of trajectory profiles
H.6.2. Profiles along a single trajectory
H.6.3. Ragged array representation of trajectory profiles

Note: For greater readability, the conventional highlighting for new material. has not been applied to the whole chapter.

H.1. Point Data

To represent data at scattered locations and times with no implied relationship among of coordinate positions, both data and coordinates must share the same (sample) instance dimension.   Because each feature contains only a single data element, there is no need for a separate element dimension.  The representation of point features is a special, degenerate case of the standard four representations.  The coordinates attribute is used on the data variables to unambiguously identify the relevant space and time auxiliary coordinate variables.

Example H.1. Point data.

   dimensions:
      obs = 1234 ;

   variables:
      double time(obs) ; 
          time:standard_name = “time”;
          time:long_name = "time of measurement" ;
          time:units = "days since 1970-01-01 00:00:00" ;
      float lon(obs) ; 
          lon:standard_name = "longitude";
          lon:long_name = "longitude of the observation";
          lon:units = "degrees_east";
      float lat(obs) ; 
          lat:standard_name = "latitude";
          lat:long_name = "latitude of the observation" ;
          lat:units = "degrees_north" ;
      float alt(obs) ;
          alt:long_name = "vertical distance above the surface" ;
          alt:standard_name = "height" ;
          alt:units = "m";
          alt:positive = "up";
          alt:axis = "Z";

      float humidity(obs) ;
          humidity:standard_name = "specific_humidity" ;
          humidity:coordinates = "time lat lon alt" ;
      float temp(obs) ;
          temp:standard_name = "air_temperature" ;
          temp:units = "Celsius" ;
          temp:coordinates = "time lat lon alt" ;

   attributes:
      :featureType = "point";

In this example, the humidity(i) and temp(i) data are associated with the coordinate values time(i), lat(i), lon(i), and alt(i). The obs dimension may optionally be the netCDF unlimited dimension of the netCDF file.