
GDT netCDF conventions for climate data, version 1.3

Jonathan Gregory1, Bob Drach2 and Simon Tett1

(1) Hadley Centre, UK Met Office; (2) PCMDI, LLNL

14th March 1999

1 Purposes

This standard defines a set of conventions adopted in order to promote the interchange
and sharing of files created with the netCDF Application Programmer Interface (API).
The standard is based upon version 2.4 of netCDF. Documentation of the netCDF
API may be found in the “NetCDF Users’ Guide”, Version 2.4, February 1996, avail-
able from http://www.unidata.ucar.edu/packages/netcdf/ or via anonymous ftp at
ftp.unidata.ucar.edu. The standard is named “GDT” from the names of the authors.

This standard is intended for use with climate data, and was designed with data
generated by GCMs particularly in mind. We recognise that there are limits to what
a standard can practically cover; we restrict ourselves to issues which we believe to be
of common and frequent concern in the design of climate metadata. Although this is
specifically a netCDF standard, we feel that most of the ideas are of wider application.
Our main purpose is to propose a clear, adequate and flexible definition of the metadata
needed for climate data. The metadata objects could be contained in file formats other
than netCDF. Interconversion of the metadata between files of different formats will be
facilitated if they are based on similar ideas.

This standard is mostly additional to the conventions sponsored by COARDS (ftp://-
ftp.unidata.ucar.edu/pub/netcdf/Conventions/COARDS). In addition, all Unidata rec-
ommendations are supported here unless noted to the contrary. Comments indicate the
places where there are differences between the standards. Comments given in emphasised
type and CDL examples given in slanted typewriter type are not part of the standard.
Note that examples typically show only the details relevant to the point under discussion,
and hence may be incomplete with respect to the provisions of the complete standard.

Successful transmission of data depends upon the receiver of the file having software
that will correctly interpret it. For this reason, a strategy that is as conservative as
possible in the use of attributes and encoding techniques will best promote portability of
data.

This standard also refers to the udunits standard supported by Unidata. The udunits
package is available via anonymous ftp at ftp.unidata.ucar.edu. See section 11 for
details of how the package is used by this convention to define units for physical quantities.

Useful comments and suggestions from Karl Taylor, John Sheldon, Jan Polcher, Bry-
ant McAvaney, Harvey Davies, John Caron, Steve Hankin and contributors to the netCDF

1



news group have influenced the development of this standard. We have made some changes
to gain greater compatibility with the NCAR CSM netCDF standard.

2 Filename

NetCDF files should have the file name extension .nc.

3 Data types

The netCDF data types char, short, long, float, and double are all acceptable. All nu-
meric types are signed. The byte data type, which is functionally identical to char, is not
recommended because its signedness is ambiguous in netCDF. The COARDS convention
deprecates char, rather than byte.

NetCDF does not support a character string type, so these have to be represented as
char arrays. In this standard, we refer to them as type “string”. A string array must be
implemented as a two-dimensional character data variable, serving as a vector of fixed-
length strings, the second dimension of its CDL declaration (leading dimension in terms
of Fortran) being recorded as a dimension in the netCDF file.

4 Attributes

This standard describes many attributes (some mandatory, others optional), but a file
may also contain non-standard attributes. Such attributes do not represent a violation of
this standard. Application programs should ignore attributes that they do not recognise
or which are irrelevant for their purposes. Conventional attribute names should be used
wherever applicable. Non-standard names should be as meaningful as possible. Before
introducing an attribute, consideration should be given to whether the information would
be better represented as a variable. In general, if a proposed attribute requires ancillary
data to describe it, is multidimensional, requires any of the defined netCDF dimensions
to index its values, or requires a significant amount of storage, a variable should be used
instead. When this standard defines string attributes which make take various prescribed
values, the possible values are given in lower case. However, applications programs should
not be sensitive to case in these attributes. Several string attributes are defined by this
standard to contain “blank-separated lists”. Consecutive words in such a list are separated
by one or more adjacent spaces. The list may begin and end with any number of spaces.
See Appendix A for a list of attributes described by this standard.

5 Global attributes

The Unidata-standard attribute Conventions is recommended to reference this standard,
containing the string "GDT 1.3". This standard is registered with Unidata under the
name “GDT” in the directory ftp://ftp.unidata.ucar.edu/pub/netcdf/Conventions

2



and is available from http://www-pcmdi.llnl.gov/drach/GDT convention.html and
http://www.met-office.gov.uk/sec5/CR div/GDT convention.html.

The float attribute appendices is recommended to record the version number of the
appendices to this standard used by the application which generated the file (see section
12). This information could perhaps be recorded in the Conventions attribute, but having
a separate attribute for it will allow applications to extract the information without having
to parse a string. The string attribute quantity table should be used to record the URL
of the quantity table (see section 12). If this attribute is a null string, it is assumed that
Appendix D was used, at the version specified by appendices.

The string attribute comment may be used to record any extra information about the
file. Additional attributes to describe the file may be included as required. For example,
GCM output might include an attribute to name the model integration.

Although not mandatory, the Unidata-standard attribute history is recommended
to record the evolution of the data contained within a netCDF file. Applications which
process netCDF data can append their information to the history attribute. The global
history attribute is assumed to apply to all data variables; individual data variables may
have their own history attributes supplying additional information (see section 12).

Use of the string attributes institution and production is recommended. The
attribute institution specifies who produced or supplied the data. We prefer this name
to “center” or “centre” because the two possible spellings could cause confusion. The
attribute production indicates how the data was produced. If it was model-generated,
production should name the model and its version, as specifically as could be useful. If
it is observational, production should characterise it e.g. "surface observation" or
"radiosonde". The global institution and production attributes are taken to apply
to all data variables which do not have their own such attributes (see section 12).

The calendar attribute (see section 23) may be recorded as a global attribute. The
global calendar attribute is interpreted as a default for all time axes.

6 Variable names

Variable names should begin with a letter and be composed of letters, digits, and under-
scores. Case is significant in netCDF names, but it is recommended that names should
not be distinguished purely by case i.e. if case is disregarded, no two names should be
the same. It is also recommended that variable names should be obviously meaningful, if
possible, as this renders the file more effectively self-describing. However, nothing in this
convention relies on the use of particular names for variables.

7 Data variables

The netCDF variables which contain the physical data are referred to as “data variables”,
also referred to as “primary variables” by Unidata. Apart from the general naming rules
for variables (above, section 6), the names of data variables are not standardised by these
conventions (since files may in general contain multiple data variables of the same physical
quantity).

3



8 Coordinate variables

A one-dimensional netCDF variable associated with a dimension of one or more data
variables is called a “coordinate variable”. A coordinate variable whose dimension name
is identical to its own name is referred to as a “main coordinate variable” in this standard,
when it is necessary to distinguish it from other types of coordinate variable (sections 17,
18, 19 and 20). Apart from the general naming rules for variables (above, section 6), the
names of coordinate variables are not standardised by these conventions (since files may
in general contain multiple coordinate variables of the same orientation). The values in
a main coordinate variable must be strictly monotonic (all values are different and either
increasing or decreasing) because this assumption is frequently made by software.

9 Axes and dimensionality of a data variable

A data variable may have any number of dimensions, including zero, and the dimensions
must all have different names. COARDS strongly recommends limiting the number to
four, but we wish to allow greater flexibility. The dimensions of the variable define the
axes of the quantity it contains. Dimensions other than those of space and time may
be included. Several examples can be found in this document. Components of vector
or tensor quantities could be contained in a single data variable by giving the variable
a dimension over components. While there exist advantages for manipulating such a
variable in memory, we see no strong advantage in introducing this complexity into the
netCDF description, and do not recommend it. Under certain circumstances, one may
need more than one dimension in a particular quantity (see section 28 concerning multiple
time axes). For instance, a data variable containing a two-dimensional probability density
function might correlate the temperature at two different vertical levels, and hence would
have temperature on both axes.

If any or all of the dimensions of a data variable have the interpretations of “date or
time” (T), “height or depth” (Z), “latitude” (Y), or “longitude” (X) then those dimensions
should appear in the relative order T, then Z, then Y, then X in the CDL definition
corresponding to the file. In terms of Fortran, this means X is the first dimension of the
array. Non-spatiotemporal dimensions should be placed to the left of the spatiotemporal
dimensions i.e. as trailing dimensions in terms of Fortran.

The reason for this convention is that these kinds of axes may have special meanings
to particular applications. For instance, an application might want to plot a longitude–
latitude map, or integrate vertically, or extract a timeseries. In the COARDS standard,
the indication given by the order of dimensions and information in the attributes of the
coordinate variables have to be used together to identify the required axes. For compatibility
with COARDS, we uphold all these conventions, but we also introduce a new attribute to
make the identification straightforward and unambiguous, as follows.

If the last four dimensions do not have the interpretations TZYX (in CDL order, omit-
ting from the left if there are fewer than four dimensions), an axis attribute should be
attached to the data variable. In other cases it is optional, but recommended. This at-
tribute is a char array of size equal to the dimensionality of the data variable, having
one element for each dimension (in CDL order), indicating the interpretation of that di-
mension. The permitted characters are T Z Y and X, with the meanings given above, and

4



- as a placeholder for a dimension which has none of these meanings. Each permitted
letter may appear no more than once in the array. If a data variable has more than one
dimension which could be given a certain interpretation, the axis attribute will therefore
clarify which should be chosen. Note that if there are multiple time axes (section 28),
of which only one is not collapsed, this single “climatological time” axis would normally
be the designated T-axis. If the axis attribute is included, the dimensions may be put in
any order, but this should be avoided if possible because applications not able to use this
attribute may not process the data correctly.

Axes for an ordinary time-mean longitude–latitude–height variable:

dimensions:

lat=18;

lon=36;

pressure=15;

con_time=1;

variables:

float xwind(con_time,pressure,lat,lon); // order T Z Y X

xwind:axis="TZYX";

float lon(lon);

float lat(lat);

float pressure(pressure);

float con_time(con_time);

See sections 14, 15, 16, 23 for details of longitude, latitude, vertical and time axes.

The coordinates of points within the data variable are the simple ordered tuples formed
by associating values from the coordinate variables (section 8). If a particular axis does
not have a coordinate variable, the coordinate values are assumed to be equal to their
indices along the axis, numbering from 0.

Dimensions may be of any size, including unity. When a single value of some physical
quantity applies to all the values in a data variable, the recommended means of attaching
this information to the variable is by use of a singleton dimension (a dimension of size
unity) with a one-element coordinate variable. The advantage of this method is that all the
attributes of a coordinate variable (quantity, components, boundaries, etc.) can be used
to describe the single-valued quantity. Singleton dimensions also result from contractions,
described in section 22.

Longitude–latitude field of temperature on a pressure level: This would use a
singleton pressure dimension to record the level, thus:

dimensions:

lon=96;

lat=72;

pressure=1; // single-valued coordinate variable

variables:

float temperature(pressure,lat,lon); // axes in order Z Y X

temperature:axis="ZYX";

float pressure(pressure);

5



pressure:long_name="pressure";

pressure:units="kPa";

data:

pressure=50.0; // Pressure level of 50 kPa = 500 mbar

The units and long name attributes are described in section 12.

Surface air temperature: Surface meteorological measurements are made at a certain
defined height e.g. 1.5 m, which can be shown thus:

variables:

float temperature(height,lat,lon);

temperature:axis="ZYX";

temperature:long_name="atmospheric temperature";

temperature:units="K";

float height(height);

height:long_name="height above the surface";

height:units="m";

data:

height=1.5;

The explicit height should not be given if the surface of measurement is included in the
name of the quantity e.g. screen height.

10 Coordinate systems

If the axis attribute indicates X- and Y-axes, and these are in degrees of longitude and
latitude respectively, these axes constitute a longitude–latitude grid mapped onto the
Earth’s surface, and areas of the XY-boxes may be calculated on this assumption.

A coordinate system for the Earth’s surface which is rectilinear but based on a polar
axis other than the normal geographical axis is referred to as a “rotated grid”. To describe
rotated grids, a two-element float attribute north pole is attached to the data variable,
specifying the (longitude,latitude) coordinates of the rotated north pole. If the attribute
is absent and relevant, it is assumed to have the value (0.,90.) i.e. the geographical north
pole.

In some systems, the axes covering the Earth’s surface do not define a rectilinear grid.
We do not wish necessarily to exclude non-rectilinear systems. For the moment, this
standard is undefined for these systems, and we invite comments from potential users on
the appropriate definition. The COARDS standard excludes non-rectilinear systems. In
principle, any coordinate system can be handled, albeit clumsily, by replacing the relevant
two or more axes by by a single axis which indexes the points, and providing associated
coordinate variables to specify the coordinates, point by point (see section 18).

11 Units

The udunits package includes a file udunits.dat, which lists collections of unit names.
The names given in the most recent version of this file and their plural forms will be

6



regarded as acceptable unit names for this standard, with a few modifications which will
be listed in Appendix C to this standard. COARDS lists some modifications within the
standard, but we would prefer to put in place a means to allow future modifications to be
made easily. Users of this standard should not define their own units, because this would
make their files less portable; requests for new units should be directed to Unidata.

The udunits package also defines a means for linear transformation of units by a scale
factor and an offset. This convention is allowed when it is natural to express a unit in such
a form e.g. density of sea-water in kgm−3 in excess of 1000 kgm−3, which can be specified
to udunits as "kg m-3 @ 1000". COARDS does not permit the use of this facility. This
facility should not be used as a means of data compression, for which an alternative is
provided (see section 32).

12 Physical quantity of a variable

These conventions standardise three string attributes for specifying the physical quantity
of data and coordinate variables.

The units attribute is formatted as per the recommendations in the Unidata udunits
package (see section 11), with extensions for time (see section 25). Case is significant
in the units. This attribute is mandatory unless the quantity is dimensionless (a pure
number), in which case the units may be given as a pure number. There are a few
defined dimensionless units, such as percent, but there is no need for a wide variety
of dimensionless units for quantities like sea-ice concentration, cloud fraction, probability
and so on; this descriptive information is the long name rather than the units. A scale
factor and/or offset may be specified quantity e.g. sea-ice concentration in tenths may be
given as units="0.1f". A dimensionless quantity with no scaling or offset may have
units="1.0f" or units="unity".

The long name is a standard Unidata attribute containing a descriptive name, which
should not specify the units. This attribute is optional.

The quantity attribute identifies the quantity by a description chosen from a defined
list, optionally with additional information enclosed in parentheses () if sufficient detail
cannot be given by a standardised description. The purpose of defining a list is to allow
users of data from different sources to decide which quantities are comparable. Case is
not significant in the quantity.

We refer to the list of possible quantities as the “quantity table”. The quantity table
defines the quantity and a permissible unit for each quantity. Any legal and physically
equivalent unit would be an acceptable units attribute. There are two options for a
choice of quantity table. One option is to use Appendix D of this standard, which will be
made available on the web. In this case, the global quantity table attribute should be
set to a null string. Each quantity in Appendix D will be labelled with the version of the
appendices at which it was introduced, enabling an application to deduce the complete
set of quantities which was available to the application which generated the file. The
other option is to produce a list of all the possible quantity names, giving for each
one an acceptable unit and the name of an equivalent quantity in Appendix D. This list
should be made available on the web, and its URL recorded in the global quantity table

attribute.

7



The use of standardised quantities is optional. The presence of the global quantity -

table attribute implies that this option is being followed. The quantity name may op-
tionally be recorded in the long name attribute if preferred (to avoid having identical
long name and quantity attributes). Therefore if an application which wishes to make
use of quantities finds that the quantity attribute is absent, it should obtain the quantity
from the long name attribute. In the remainder of this document, quantity attributes
do not appear in the examples, but the long name attributes could serve to supply the
quantity information.

Quantity attributes:

float tempt(pressure,lat,lon);

tempt:long_name="potential temperature";

tempt:quantity="atmospheric potential temperature "

"(after timestep)";

tempt:units="K";

"potential temperature" is the description which might be used as the title of a plot.
"atmospheric potential temperature" is the standard quantity, and "after time-

step" is additional information, which a generic application can disregard.

Whether two physical quantities are different or the same is often not a question with
a well-defined answer. Certainly if they are the same, they must have the same unit,
but various quantities with the same unit may have to be distinguished e.g. atmospheric
potential temperature and soil temperature. In practice, the most specific descrip-
tion applicable should be used. We intend to expand Appendix D on an ongoing basis in
response to requests by users of this standard, since we cannot foresee all the possibili-
ties, and we will err on the side of expansion, rather than restriction, when it is unclear
whether a new quantity is needed.

The subgrid attribute (see section 21) can be regarded as a modifier of the quantity;
it applies only to data variables, not coordinate variables. The quantity and subgrid

attributes together define the physical dimensions of the quantity (through information
given in Appendix B and the quantity table), and the units must be consistent with this.
The long name might repeat information which is standardised by the subgrid attribute.
For instance, the long name could be "maximum temperature". The subgrid attribute
will define precisely in what sense the temperature is maximised.

A data variable may have a history attribute, supplying information about the deriva-
tion of the quantity that is not possible to include either as a standardised form or in
parentheses in the quantity and subgrid attributes. This attribute should be used as
a last resort. The global history attribute, if present, also applies to all data variables
(section 5). A data variable may also have institution and production attributes, indi-
cating how the data was originally obtained (see section 5). These attributes take prece-
dence over the corresponding global attributes. The attributes history, institution
and production must not be relied upon to distinguish between data variables in the file,
and generic applications may ignore them.

Optional quantity information: These optional attributes might be used thus to de-
scribe a gridded observational precipitation climatology.

float precipitation(lat,lon);

8



precipitation:history="gridded using Thiessen polygon weighting";

precipitation:institution="Climatic Research Unit, "

"University of East Anglia, UK";

precipitation:long_name="rate of precipitation";

precipitation:production="surface station observation";

precipitation:units="mm day-1";

This would be appropriate if the data variable was in a file with data from other institutions
or methods of production.

The optional modulo attribute of a variable, if present, records a number which can be
added or subtracted without altering the validity or physical significance of the quantity.
It should be given in the same units as the variable. This is most likely to be useful for
longitude coordinate axes (section 14), with a modulo of 360, and climatological axes of
seasonal or diurnal phase (sections 25 and 28).

We note that the Unidata-standard FORTRAN format attribute may be useful for both
coordinate and data variables.

In addition, other model-dependent attributes may included to define the quantity
of a variable. The Hadley Centre model will give each data variable integer stash and
submodel attributes, for example, which are codes identifying GCM diagnostic output
quantities.

Variables may contain quantities which are discrete rather than continuous, meaning
they can take only certain prescribed values. This is more likely for coordinate variables
than data variables. For instance, a data variable containing the results of a Fourier or
spherical harmonic analysis might have a dimension for harmonic number. Section 25
describes some time variables which are discrete.

13 Topology of an axis

An axis with “circular topology” is one which can be legitimately transformed by shifting
all the points one place along the axis, moving the last point to the beginning, any number
of times. The main coordinate variable of an axis with circular topology is distinguished
by the presence of an attribute topology="circular". A longitude axis which circles the
whole globe is an example. The value linear or the absence of this attribute indicates
an axis with “linear topology”. The topology is indicated only by the main coordinate
variable, but since it is the property of the axis it applies to any component, associated
or boundary coordinate variables as well.

When a circular axis is rotated, the main coordinate values must be altered in order
to remain monotonic. Therefore the main coordinate variable of a circular axis requires
a modulo (section 12).

Note that the topology and modulo attributes convey different information. For in-
stance, a longitude coordinate variable limited to values in the eastern hemisphere between
the Greenwich meridian and the date-line (e.g. 0E, 25E, 120E, 130E, 180E) does not
have circular topology. (This might be from a model of a limited area of the world.) When
making a contour map of a field with such a longitude axis, one can interpolate anywhere
within the eastern hemisphere to draw the contours, but it is not legitimate to interpolate

9



over the western hemisphere and draw the rest of the world, which is simply missing. The
implication of circular topology would be that one could put any longitude at all on the
left-hand side of the map. However, this coordinate variable does have a modulo (of 360,
as required in section 14), and the points can be labelled in any way which is equivalent
under the modulo to the coordinates in the file. The coordinate values 0,25,120,130,180
are thus equivalent to −360,−335,−240,−230,−180.

14 Longitude dimension

Coordinate variables representing longitudes must always explicitly include the units

attribute; there is no default value. The units attribute will be a string formatted as per
the recommendations in the Unidata udunits package. The recommended unit of longitude
is degrees east (eastward positive). Also acceptable are degree east, degree E, and
degrees E. The unit degrees west (westward positive) is not recommended because it
implies a negative conversion factor from degrees east.

Longitude axes should have the attribute modulo=360, indicating that they may be
interpreted modulo 360. Thus, for example, -180, 180, and 540 are all valid represen-
tations of the International Dateline and 0 and 360 are both valid representations of the
Prime Meridian. COARDS assumes that longitudes may always be treated in this way.
Since we have introduced the modulo attribute, we require that it should be specified to
indicate this. A global longitude axis should have the attribute topology="circular".
Note that the presence of a modulo attribute does not mean that the axis necessarily has
circular topology (section 13); a longitude axis covering only part of the globe cannot have
its points rotated. The sequence of numerical longitude values stored in the netCDF file
must be monotonic in a non-modulo sense for a main coordinate variable of longitude.

Global longitude axis:

float lon(lon);

lon:long_name="longitude";

lon:modulo=360.0f;

lon:topology="circular";

lon:units="degrees_east";

Note that if a quantity table is in use, "longitude" is the name of the quantity in the
standard list, and could be recorded instead in a quantity attribute.

15 Latitude dimension

Coordinate variables representing latitudes must always explicitly include the units at-
tribute; there is no default value. The units attribute will be a string formatted as per
the recommendations in the Unidata udunits package. The recommended unit of latitude
is degrees north. Also acceptable are degree north, degree N, and degrees N.

Latitude axis:

10



float lat(lat);

lat:long_name="latitude";

lat:units="degrees_north";

Note that if a quantity table is in use, "latitude" is the name of the quantity in the
standard list, and could be recorded instead in a quantity attribute.

16 Vertical (height or depth) dimension

Whereas the two horizontal dimensions are usually longitude and latitude, whose direction
is well defined, a variety of quantities may be used for the vertical axis, if there is one. The
axis to be regarded as the vertical axis must have both a long name attribute (section 12)
and a positive attribute, with one of the allowed values up or down, to indicate the sense
of the direction of positive since this information may be useful for applications which
display the data.

Vertical pressure axis:

dimensions:

pressure=15;

variables:

float pressure(pressure);

pressure:long_name="pressure";

pressure:positive="down";

pressure:units="hPa";

data:

pressure=850, 700, 500, 300, 200, 150, 100, 50, 30, 20, 10;

The COARDS standard requires the units of the vertical axis to be selected from a
defined list, in order that this axis can be recognised by its units. It gives special status to
units of pressure, for which the direction of positive is defined, and makes the positive

attribute mandatory for vertical axes with other units.

We have adopted a different approach for a number of reasons. Firstly, to require units
for the vertical axis means defining dimensionless units for any dimensionless quantity one
might wish to use for the coordinate variable. This is inconsistent with the treatment of
a data variable; the standard does not require that dimensionless units be invented for
dimensionless physical quantities in data variables. Secondly, the vertical dimension of
a data variable can be identified from the axis attribute or the the order of dimensions
(see section 9), allowing any application which expects such a dimension to find it without
any further help. Thirdly, the quantity attribute (if in use) is more informative than the
units.

We are not entirely convinced that the direction of positive should really be recorded as
part of the data structure. It is mostly an issue for displaying the data, and is to some
extent a matter of personal preference. If such special treatment is given to the vertical
axis, why is it not also recorded for other axes? For instance, when latitude is shown
on the horizontal axis of a plot, is north on the left or the right? This is the same kind

11



of question, but it strikes us as more a matter for a graphics application to consider.
Nonetheless, we have required the positive attribute for compatibility with COARDS.

For example, if an oceanographic netCDF file encodes the depth of the surface as 0 and
the depth of 1000 m as 1000 then the axis would use attributes as follows: units="m",
long name="depth below the surface", positive="down". If, on the other hand, the
depth of 1000 m were represented as −1000, we would have long name="height above

the surface", positive="up".

17 Component variables

A continuous physical variable may require more than one number to specify it at each
point. We refer to these as “components”. The values of the components are recorded
in variables referred to as “component variables”. The variable to which the components
belong is called the “head” variable of the components. The names of the component
variables are recorded as a blank-separated list in a component string attribute of the
head variable. The dimensions of a component variable must be identical with those of
its head variable. OGDT restricted components to coordinate variables, but the concept
has here been generalised, since any quantity that is used as a coordinate variable might
also be needed as a data variable.

When a coordinate variable has components, this standard requires that a main co-
ordinate variable should nonetheless be supplied which represents a combination of the
components that can be used to order the points on the axis. As usual, this main coordi-
nate variable must be monotonic, but the components do not need to be monotonic. The
definition of the main coordinate in terms of its components may be given in parentheses
in the component attribute. This information is not standardised and generic applications
cannot be expected to make use of it.

Hybrid vertical coordinate: A vertical coordinate η ≡ p/p0 + σ is used in some
atmospheric GCMs. Atmospheric model levels are specified in terms of (p, σ) pairs, where
p is pressure, p0 is a constant and σ is fraction of surface pressure (which is variable).
The η value is a linear combination of the two, which cannot be uniquely decomposed back
into (p, σ). We would record this coordinate variable thus:

float eta(eta); // main coordinate variable

eta:component="pressure sigma "

"(eta=pressure/p0+sigma; p0=100 kPa)";

float pressure(eta);

float sigma(eta);

A generic application would treat the component and main coordinates as independent
information. The extra knowledge required to relate them would reside in any specific
application which needed it. Hybrid vertical coordinates are the only obvious application
of component variables, but the convention could be used for other similar purposes if they
arise.

12



18 Associated variables

An axis of a data variable, or two or more axes in combination, may have alternative sets
of coordinate values. These alternative sets are recorded in variables referred to as “asso-
ciated” variables, having their own units, long name and other appropriate attributes to
describe them. The names of the associated variables are recorded as a blank-separated
list in an associate string attribute either of the data variable or of the main coordinate
variable of the axis concerned. If the association is with the data variable, it applies
only for that data variable, but if it is with the main coordinate variable, it applies for
any data variable which uses that main coordinate variable. Association with the main
coordinate variable thus may be more convenient, but is less flexible. Association with
the data variable is the only option when several axes are involved, and when there is no
main coordinate variable. The examples illustrate these points.

The associate attribute may alternatively and equivalently be named coordinates.
This possibility is included for compatibility with the CSM standard. However, in the
present standard it is deprecated because of possible confusion with the normal definition
of “coordinate variable” (section 8) and because the use of associated variables is wider
than just coordinate variables in the usual sense.

A variable may be associated with more than one data variable or coordinate vari-
able. If an associated variable itself has an associate attribute, variables named by this
attribute are also regarded as being associated.

An associated variable must have dimensions which are all dimensions of any data
variable with which it is associated; the associated variable can be regarded as a function
of the indices along these axes. The values of an associated variable do not have to be
monotonic.

A generic application is not required to make any use of associated variables. Asso-
ciated variables are not indicated in the axis attribute of the data variable (section 9).
However, to improve legibility of the CDL file, it is recommended that when variables
named by the associate attribute of a data variable have interpretations that would be
denoted by T Z Y or X in the axis attribute, they are listed in that order, with any others
appearing in front.

Vertical axis: Many associated variables will be one-dimensional, giving alternative sets
of values for a single axis. One example is a vertical axis where one wishes to store both
the physical coordinate and the ordinal model level number:

dimensions:

lat=90;

sigma=19;

variables:

float xwind(sigma,lat); // 2D data variable

xwind:axis="ZY";

float lat(lat);

lat:long_name="latitude";

lat:units="degrees_north";

float sigma(sigma); // physical height coordinate

sigma:associate="model_level";

13



sigma:long_name="sigma";

sigma:positive="down";

int model_level(sigma); // model level number at each height

model_level:long_name="model level number";

model_level:positive="up";

As the association of model level is with sigma, any data variable with a sigma-axis
will have the association with model level; it is not a property of xwind particularly.

Trajectory: The value of a quantity along a one-dimensional trajectory. In such a case,
we might have a coordinate variable containing time of travel and associated coordinate
variables giving the latitude and longitude of each point:

dimensions:

day=10; // 10 sample times along a trajectory

variables:

float hice(day); // sea-ice thickness measured as the floe drifts

hice:associate="lat lon";

hice:axis="T";

hice:units="m";

float day(day); // time since the beginning of the journey

day:long_name="time";

day:units="day";

float lon(day); // longitude at each time

lon:long_name="longitude";

lon:units="degrees_east";

float lat(day); // latitude at each time

lat:long_name="latitude";

lat:units="degrees_north";

The main coordinate variable (day) must be monotonic, but the associated coordinates
are not necessarily. An important application rather similar to this one is described in
section 19. Note that lat and lon cannot be indicated as the X and Y coordinates in
the axis attribute (section 9). This is reasonable because, even though they have the
interpretations of latitude and longitude, they are not independent dimensions in the sense
normally expected by an application which might look for such axes.

Since lon and lat are associated with the data variable hice, other variables with
a day-axis will not share these associations. If they are wanted, they would have to be
indicated on those data variables as well. This approach allows the possibility that the
same day variable might occur in combination with various different sets of associated
coordinate variables. For instance, there might be more than one trajectory, with the
same day coordinates but different longitude–latitude positions.

Transformed coordinates: Associated variables of more than one dimension can be
used to describe alternative coordinate systems. For example, vertical profiles of atmo-
spheric humidity might be available on a regular longitude–latitude grid, but we might
also wish to give the national grid coordinates of each point. The national grid x- and
y-coordinates are each functions of both latitude and longitude; the x-coordinate does not
correspond specifically to longitude, nor the y- to latitude. The appropriate representation
is therefore:

14



dimensions:

lon=10;

lat=20;

pressure=15;

variables:

float humidity(pressure,lat,lon);

humidity:associate="y x";

float pressure(pressure);

pressure:long_name="pressure";

pressure:positive="down";

pressure:units="kPa";

float lon(lon); // 1D main coordinate variable

lon:long_name="longitude";

lon:modulo=360.0f;

lon:units="degrees_east";

float lat(lat);

lat:long_name="latitude";

lat:units="degrees_north";

float x(lat,lon); // 2D associated coordinate variable

x:long_name="UK national grid eastings";

float y(lat,lon);

y:long_name="UK national grid northings";

This tells us that humidity[*][10][5] is the vertical profile of humidity at the point with
latitude lat[10] and longitude lon[5], which is at national grid x-coordinate x[10][5]

and y-coordinate y[10][5]. Because the associated variables are multidimensional, they
do not correspond one-to-one with the axes, so the association must be with the data
variable rather than the main coordinate variables.

No main coordinate variables: A related situation is when the 2D grid is staggered
or transformed geometrically in some way (other than rotation—see section 10), so that
it is not possible or easy to give one-dimensional coordinate variables for the axes. In this
case, there would be no main coordinate variables, and the default of plain indexes would
apply. The physical coordinates are functions of the 2D gridpoint indices, and would be
given in associated variables of the data variable just as above:

dimensions:

x=90;

y=45;

variables:

float orog(y,x); // 2D variable on a horizontal grid

orog:associate="lat lon";

orog:axis="--";

orog:long_name="height of the surface above sea-level";

orog:units="m";

float lon(y,x); // 2D coordinate variable on the same grid

lon:long_name="longitude";

lon:modulo=360.0f;

lon:units="degrees_east";

15



float lat(y,x);

lat:long_name="latitude";

lat:units="degrees_north";

The lat and lon variables are not indicated as the X and Y coordinates in the axis

variable (section 9). An application which referred to latitude and longitude coordinates
would not generally expect them to be two-dimensional. If it can handle this situation, it
should identify these axes by their long name and units.

3D associated coordinates: These could be used if one wished to describe a field with
alternative 3D coordinate systems, for instance on both a regular Cartesian grid, and in
cylindrical or spherical coordinates. The values of the alternative coordinates would be
given on the Cartesian grid. In the spherical case, for instance

float temperature(z,y,x); // 3D variable on a Cartesian grid

temperature:associate="radius theta phi";

float radius(z,y,x);

float theta(z,y,x);

float phi(z,y,x);

A particular technical application of a one-dimensional associated coordinate is to deal
with the limitation of netCDF to a single unlimited dimension. If several data variables
have unlimited axes of different lengths or physical significance, they can all share a
nominal unlimited dimension, and each have associated variables specifying the meaning
of the axis.

More than one unlimited axis: Consider a file which contains data variables with
unlimited axes measuring elapsed time with different sampling frequency, and hence of
different lengths.

dimensions:

time_counter=UNLIMITED;

variables:

float sw(time_counter); // sampled every 3 hours

sw:associate="time_3h";

sw:axis="T";

sw:long_name="vertical component of "

"shortwave radiative flux density";

sw:units="W m-2";

float latent(time_counter); // sampled every 30 minutes

latent:associate="time_30min";

latent:axis="T";

latent:long_name="latent heat flux density";

latent:units="W m-2";

float time_3h(time_counter)";

time_3h:long_name="elapsed time";

time_3h:units="h";

float time_30min(time_counter);

time_30min:long_name="elapsed time";

time_30min:units="min";

16



19 Bundles

If several data arrays containing the same physical quantity have one or more identical
axes, but are distinguished by the values of other singleton coordinate variables, it may
be convenient to store them in the same data variable. The common axes of the separate
arrays become axes of the combined variable. One or more additional axes are introduced
to “bundle up” the separate arrays. Such an axis does not correspond to a continuous
physical coordinate. It acts simply as an index of the bundled-up arrays.

The singleton values of the separate arrays are recorded in associated coordinate vari-
ables for the bundling dimension. They should not be interpreted as continuous coordi-
nates.

Timeseries: The Hadley Centre GCM can generate timeseries of the values of quantities
at individual points. Typically, timeseries from many different points are produced of the
same quantity at the same sampling times. It is natural to contain this information in a
data variable with two dimensions. One dimension is the common time axis, specifying
the sampling times, which are the same for all the points sampled. The other dimension is
not a continuous physical coordinate; it is simply being used to “bundle up” the timeseries,
the points being irregularly scattered in a space of two or more dimensions. Thus:

dimensions:

points=15; // measurement locations

times=20; // sampling times

variables:

float snowdepth(times,points);

snowdepth:associate="sitename lat lon";

snowdepth:axis="T-";

float lon(points); // longitude of sites

lon:long_name="longitude";

lon:modulo=360.0f;

lon:units="degrees_east";

float lat(points); // latitude of sites

lat:long_name="latitude";

lat:units="degrees_north";

char sitename(points,StringMaxLength); // string array of sitenames

double times(times); // times of measurement

See section 23 concerning the time coordinates. This same form could be used for observed
timeseries from stations. The bundling axis (points) is simply an index. The long name

and units of the associated coordinates identify their meanings.

Vertical profiles: A similar application is that of vertical profiles at sets of points; for
example, scattered vertical temperature profiles through the ocean, or data from various
radiosonde stations.

dimensions:

station=10; // measurement locations

pressure=11; // pressure levels

variables:

17



float humidity(pressure,station);

humidity:associate="lat lon";

humidity:axis="Z-";

int station(station); // station numbers

float lon(station); // longitude of stations

float lat(station); // latitude of stations

float pressure(pressure)

Several parcel trajectories: Consider a set of Lagrangian parcel trajectories (for in-
stance, ocean drifters). Various parameters are evaluated at fixed times from the start of
each trajectory. The trajectories are identified by their place of origin, and the position is
a function of time and trajectory identity. The position information is therefore stored in
multidimensional associated coordinate variables.

dimensions:

parcel=15; // number of trajectories

times=20;

max_len_parcel_name=64; // max length of trajectory name

variables:

float temperature(parcel,times);

temperature:associate="parcel_name lat lon";

temperature:axis="-T";

float salinity(parcel,times);

salinity:associate="parcel_name lat lon";

salinity:axis="-T";

float times(times);

times:units="days";

char parcel_name(parcel,max_len_parcel_name);

float lon(parcel,times);

float lat(parcel,times);

The associations have to be made on the data variables in this case, because parcel name

does not have a main coordinate variable, while lon and lat are multidimensional.

This section raises the question of how best to store a single timeseries, or a single
vertical profile. Following the scheme of this section, it could be contained in a two-
dimensional data variable with the bundling axis being of size unity. The associated infor-
mation such as latitude or longitude would then be stored in singleton coordinate variables,
all associated with the same dimension. Alternatively, these values could be recorded as
separate singleton dimensions (following section 9). We have no recommendation for this.
Either scheme could be appropriate; which is more natural perhaps depends on how the
data was extracted from the continuous axes.

20 Boundary variables

Along a dimension, the values might relate to points (at the coordinate values) or to
contiguous or non-contiguous cells. The boundaries of the cells should be defined as well
as the point coordinate values. The convention is to define an additional two-dimensional

18



“boundary variable” with a right-hand dimension (leading dimension in Fortran terms)
of size two. The values for which this dimension has index 0 (numbering from 0 i.e. in
C notation) supply the boundaries with the smaller main coordinate values, and those
with index 1 the large values, where “smaller” and “larger” refer simply to numerical
comparison, not to a physical direction. Supplying upper and lower boundaries separately
allows for the possibility that the cells might not be contiguous; they might even overlap.
If a lower boundary value is equal to the valid min for the coordinate variable (section
29), the cell has no lower boundary. If an upper boundary value is equal to the valid max,
the cell has no upper boundary. The name of the boundary variable is recorded in a string
attribute bounds of the main coordinate variable. We recommend that the it should be
named by the coordinate dimension with the prefix bounds . The boundary variable
should not have a units attribute; its units are the same as those of the main coordinate
variable.

Boundaries for a one-dimensional latitude coordinate variable:

float lat(lat);

lat:bounds="bounds_lat";

float bounds_lat(lat,2);

In C notation, lat[0] gives the coordinate of the first point, bounds lat[0][0] its
lower boundary, bounds lat[0][1] its upper boundary. In Fortran notation, the dec-
larations are lat(lat) and bounds lat(2,lat), and the relevant elements are lat(1),
bounds lat(1,1), bounds lat(2,1).

Albedo as a function of wavelength and snow cover: Characteristic values of
albedo are given for various wavelength bands, dependent also on snowdepth.

dimensions:

lambda=4; // number of shortwave frequency bands

snowdepth=10; // number of snowdepth categories

variables:

float albedo(lambda,snowdepth); // no units for albedo

albedo:axis="--";

albedo:long_name="surface albedo";

float lambda(lambda);

lambda:bounds="bounds_lambda";

lambda:long_name="wavelength";

lambda:units="nm";

float bounds_lambda(lambda,2);

float snowdepth(snowdepth);

snowdepth:bounds="bounds_snowdepth";

snowdepth:long_name="mass per unit area of lying snow";

snowdepth:units="kg m-2";

snowdepth:valid_max=1e9;

float bounds_snowdepth(snowdepth,2);

data:

lambda=250, 385, 570, 795;

bounds_lambda=175,320, 320,450, 450,690, 690,900;

19



snowdepth=0.05, 0.15, 0.35, 0.75, 1.25, 1.75, ..., 450.0, 1000.0;

bounds_snowdepth=0.0,0.1, 0.1,0.2, 0.2,0.5, 0.5,1.0,

1.0,1.5, 1.5,2.0, ..., 400.0,500.0, 500.0,1e9;

A first index of 0, for instance, gives albedo values for the wavelength range 175–320 nm.
The deepest snowdepth class has no upper bound; any value above 500 falls into this class.

In some cases such as the previous example the boundary coordinates are well defined,
but the gridpoint coordinates are arbitrary. In such circumstances, this standard recom-
mends the mid-point of the boundaries be used as the gridpoint. Two advantages of this
choice are: firstly, comparison of a gridpoint with a boundary will always decide which
cell the point belongs in; secondly, it will probably be an appropriate choice for plotting
and calculations involving gridpoints such as differentiation. However, as shown by the
last snowdepth cell of the above example, which is unbounded upwards, the mid-point is
not always a sensible choice.

Probability density function of precipitation amounts:

dimensions:

ppn=10;

variables:

float pdf(ppn,lat,lon);

pdf:axis="-YX";

pdf:long_name="probability density of "

"depth of water-equivalent precipitation";

pdf:units="mm-1";

float ppn(ppn);

ppn:units="mm";

ppn:long_name="depth of water-equivalent precipitation";

ppn:bounds="bounds_ppn";

float bounds_ppn(ppn,2);

data:

bounds_ppn=0.0,0.1, 0.1,0.2, 0.2,0.35, 0.35,0.5, 0.5,1.0, ...;

pdf[3][10][12] gives the probability density of precipitation amounts between 0.35 and
0.5 mm falling at the location lat[10] lon[12].

Boundary variables are recommended if the main coordinate values are not evenly
spaced, or if the dimension has a size of unity. If the coordinates are evenly spaced, and
boundaries are not specified, generic applications may assume that the main coordinates
lie at the centres of their cells. Boundary variables may be supplied for component and
associated coordinate variables as well as for main coordinate variables. Their elements
are ordered so as to correspond to the corresponding main boundary variables. Hence
they will not necessarily be monotonic, and index 0 and 1 (numbering from 0) of the
dimension of size two will not necessarily contain the smaller and larger values.

Boundary values for a hybrid vertical coordinate: The atmospheric column is
here divided into three cells in the vertical; from the surface to σ = 0.7; from there to
20 kPa, and finally to the top of the atmosphere, using the hybrid vertical coordinate
introduced in an example in section 17.

20



dimensions:

eta=3;

variables:

float(eta);

eta:long_name="pressure-sigma hybrid";

eta:component="pressure sigma";

eta:bounds="bounds_eta";

eta:positive="down";

float bounds_eta(eta,2);

float pressure(eta);

pressure:units="kPa";

pressure:long_name="pressure";

pressure:bounds="bounds_pressure";

float bounds_pressure(eta,2);

float sigma(eta);

sigma:long_name="sigma";

sigma:bounds="bounds_sigma";

float bounds_sigma(eta,2);

data:

eta=0.75, 0.45, 0.05;

bounds_eta=0.7,1.0, 0.3,0.7, 0.0,0.3;

pressure=0.0, 10.0, 5.0; // does not need to be monotonic

bounds_pressure=0.0,0.0, 20.0,0.0, 0.0,20.0; // note order

sigma=0.75, 0.35, 0.0;

bounds_sigma=0.7,1.0, 0.1,0.7, 0.0,0.1;

bounds pressure[1][0] exceeds bounds pressure[1][1] because they are ordered to
correspond to bounds eta.

Boundary variables may be given for associated multidimensional coordinate variables
(section 18). Each dimension of the main variable requires an extra dimension of size 2
in the boundary variable. These extra dimensions are placed on the right (left in Fortran
terms) of the coordinate dimensions, and in the same order as the coordinate dimensions.

Boundaries for a two-dimensional latitude coordinate variable:

float lat(y,x);

lat:bounds="bounds_lat";

float bounds_lat(y,x,2,2);

so bounds[4][5][0][0] contains the latitude of the lower left (smaller x and y) corner
of gridbox [4][5], bounds[4][5][0][1] the lower right corner, bounds[4][5][1][0]
upper left and bounds[4][5][1][1] upper right. In Fortran, the indices of the boxes
would be (1,1,6,5), (2,1,6,5), (1,2,6,5), (2,2,6,5) respectively.

21 Representation of subgrid variation

Since a data variable usually represents a physical quantity which varies continuously
along the axes, in reality there will generally be variation of the quantity between adjacent

21



gridpoints. The data variable can give only one value for each cell, despite this subgrid
variation. For many purposes, this can be taken as a “representative” value, and it is not
necessary to define precisely how it relates to the subgrid variation.

To be explicit about how each data value reflects subgrid variation along a particular
axis, use the subgrid attribute of the data variable. The most important application
of this attribute is to contracted or collapsed axes, described in section 22. This is a
string attribute comprising a list of blank-separated words. In this list, "name: method"
indicates that subgrid variation along the axis with the dimension whose “name” is given is
represented by the specified “method”. The method, which may be several words, should
be one of the permitted values detailed in Appendix B, which include mean, maximum,
minimum, mid-range, standard deviation, variance, mode, median, cell, point. Case
and punctuation are not significant in the method. Like Appendix D, Appendix B will be
expanded on request by users of this standard. Some methods imply a change of units of
the data variable, and this also is specified by Appendix B. In the above list, this is true
for variance. The method point indicates that the data values apply exactly at the
coordinate values, and do not at all represent the variation between adjacent gridpoints
along the axis concerned. The method cell indicates that each value should be regarded
as a property of the whole cell along the axis concerned e.g. a sum or integral. The method
can be differently specified for the various dimensions. It must be remembered that the
method applies only to the axis indicated. If a precipitation value in a longitude–latitude
gridbox is given the method maximum for these axes, for instance, it means that it is the
maximum within these spatial cells, and does not imply that it is also the maximum in
time.

The absence of any specification means that generic applications may regard the data
values as representative in whatever way suits their needs. For quantities calculated at
gridpoints by numerical models, this kind of vagueness is unavoidable. If a model pro-
vides a longitude–latitude field of temperature at gridpoints, an application used to draw a
contour plot of the field will generally assume that the temperatures apply at points, and
will use some interpolation scheme to compute values between them. An application which
calculates the mean of the field, however, will probably assume that the temperatures are
gridbox means, and average them by weighting each with its area. Both of these approaches
are valid. The finite-difference scheme by definition does not have any information about
subgrid variation, and may itself treat the values in both ways; it might calculate gradi-
ents between them, regarding them as points, or enforce conservation properties, regarding
them as means. It would be unusual to regard the values as extrema, however, unless this
was explicitly indicated.

Except when the data are point values, it may also be unclear what the coordinates
of the gridpoints should be. For example, what time coordinate should be assigned to a
time mean value? In such circumstances, if the boundaries of the cell are well defined,
this standard recommends that the gridpoints should be defined as the mid-point between
the boundaries (see section 20).

Subgrid time variation in timeseries: Consider 12-hourly timeseries of pressure,
temperature and precipitation from a number of stations, where pressure is measured in-
stantaneously, temperature extremes over the preceding period are recorded by maximum
and minimum thermometers, and precipitation is accumulated in a rain gauge. For a
period of 48 hours from 6 a.m. on 19th April 1998, the data is structured as follows:

22



dimensions:

instanttime=5; // 5 instantaneous measurements at 12-hour intervals

periodtime=4; // 4 intervening 12-hour periods

station=10;

variables:

float pressure(station,instanttime);

pressure:axis="-T";

pressure:long_name="pressure";

pressure:subgrid="instanttime: point";

pressure:units="kPa";

float maxtemp(station,periodtime);

maxtemp:axis="-T";

maxtemp:long_name="temperature";

maxtemp:subgrid="periodtime: maximum";

maxtemp:units="K";

float ppn(station,periodtime);

ppn:axis="-T";

ppn:long_name="depth of water-equivalent precipitation";

ppn:subgrid="periodtime: cell";

ppn:units="mm";

double instanttime(instanttime);

instanttime:long_name="time";

instanttime:units="h since 1998-19-4 6:0:0";

double periodtime(periodtime);

periodtime:bounds="bounds_periodtime";

periodtime:long_name="time";

periodtime:units="h since 1998-19-4 6:0:0";

double bounds_periodtime(periodtime,2);

data:

instanttime=0., 12., 24., 36., 48.;

periodtime=6., 18., 30., 42.;

bounds_periodtime=0.,12., 12.,24., 24.,36., 36.,48.;

It is not appropriate give a subgrid method for the station axis, since this is a bundling
axis (section 19) and not a continuous physical coordinate. The instantaneous and period
measurements have to have different time axes both because of their different dimension,
and because they do not coincide. If the pressure measurements were made at times half-
way between the others (noon and midnight), the time axes could be shared. Since the
precipitation is given as an amount, it is a sum over the interval of time by definition.
It could instead have been expressed as a rate in mm h-1, for instance, in which case its
subgrid method would be mean rather than cell.

Thickness (geopotential difference): The “thickness” is the difference in geopotential
height between two pressure surfaces in the atmosphere. This quantity is by definition one
which relates to the whole extent of its cell in the vertical dimension.

variables:

float thickness(pressure,lat,lon);

thickness:long_name="thickness";

23



thickness:subgrid="pressure: cell";

thickness:units="m2 s-2";

float pressure(pressure);

pressure:bounds="bounds_pressure";

pressure:long_name="pressure";

pressure:units="hPa";

float bounds_pressure(pressure,2);

Here, bounds pressure[0][0] and bounds pressure[0][1] will be the upper and lower
pressure bounds of the thickness field thickness[0][*][*].

If more than one subgrid method is to be indicated, they should be arranged in the
order they were applied. The left-most operation is assumed to have been applied first.
Suppose a quantity varies in both longitude and time (dimensions lon and time) within
each gridbox. Values which represent the time-average of the zonal maximum are la-
belled subgrid="lon: maximum time: mean", i.e. find the largest value at each in-
stant of time over all longitudes, then average these maxima over time; values of the
zonal maximum of time-averages are labelled subgrid="time: mean lon: maximum".
If the methods could have been applied in any order without affecting the outcome, they
may be put in any order in the subgrid attribute.

If a data value is representative of variation over a combination of axes, a single
method should be prefixed by the names of all the dimensions involved, whose order
is immaterial. Dimensions should be grouped in this way only if there is an essential
difference from treating them individually. For instance, the subgrid standard deviation of
topographic height within a longitude–latitude gridbox would have subgrid="lat: lon:

standard deviation". This is not the same as subgrid="lon: standard deviation

lat: standard deviation", which would mean finding the standard deviation along
each parallel of latitude within the zonal extent of the gridbox, and then the standard
deviation of these values over latitude.

To indicate more precisely how the subgrid method was applied, extra information
may be included in parentheses () after the identification of the method. This infor-
mation is not standardised and may be ignored by a generic application. A mean over
latitude, for instance, may be area-weighted. This could be indicated as "lat: mean

(area-weighted)".

The subgrid attribute cannot be used to show how a value reflects variation over a
coordinate which does not have a dimension in the data variable. This should be done in
the long name instead. It is generally more informative and precise to introduce a sin-
gleton dimension specifically for this purpose, however. For example, we could describe a
quantity in its long name as being simply a temporal variance, but it would be more infor-
mative to record it as a subgrid method, by giving the variable a singleton time dimension,
which could also be used to should the range of times it covers and the time-interval of the
data from which the variance was calculated. See also section 22.

22 Contracted dimensions

A contracted axis is one which is formed by aggregating the values of an axis with a larger
dimension into a smaller number of groups. In the commonest case, the dimension is col-

24



lapsed completely to a singleton dimension (i.e. a size of unity, section 9), where all data
points share the entire collapsed axis. The collapsed dimension indicates the relationship
of the data variable which is being described to another variable of higher dimensionality.
The boundaries of the cells along a contracted axis will be the outside boundaries of the
groups of cells along the uncontracted axis, or the outside coordinates if boundaries were
not given. The main coordinate values of a contracted axis will be values representative
of the coordinate ranges spanned by the groups. A collapsed dimension has a single repre-
sentative main coordinate value and boundary coordinate values supplying the complete
range of the uncollapsed axis. These boundaries will be the extreme boundary coordinate
values of the uncollapsed axis, or the extreme main coordinate values if boundaries were
not supplied. A very important application of collapsed axes is to indicate climatological
time. This is discussed in section 28.

The subgrid attribute (section 21) of the data variable with contracted axes can
be used to indicate how the data values of the variable with uncontracted axes were
aggregated to reduce the dimensions. The new subgrid information will be appended
to the existing attribute, if any, indicating the name of the newly contracted dimension.
Any existing references to the uncontracted dimension in the subgrid attribute should
be modified to refer to the contracted dimension, since the uncontracted dimension will
no longer be a dimension of the data variable.

As explained in section 21, this attribute will indicate that the data value is the mean,
maximum, minimum, etc. The allowed subgrid “methods” are listed in Appendix B,
which will be expanded as need arises. As foreseen at the moment, the idea is limited
to operations which give a single value representative of each contracted group of values,
without reference to any external constants. For example, the number which exceeds 20% of
the values in the group, or equivalently the 20th percentile, is a single number representing
the group, but the procedure of finding it is not treated as a subgrid method because it
requires the constant 0.2 to define it. Instead, the relationship of this new variable to the
old should be shown by changing its long name to indicate that it is a percentile value,
and giving it a new singleton percentage axis with value 20, or cumulative probability with
value 0.2. This kind of transformation is analogous to reducing a variable on three spatial
dimensions (say) to two by extracting its values on a specified surface. The contraction
or collapse is a special case, because, in general, the percentile axis need not have a size
of unity; it might be a new multi-valued axis (in cumulative probability) replacing the old
one (in some spatial dimension, for instance). This is like regridding a vertical axis of
height onto pressure. Having said all this, however, we note that median is in fact a
named instance of this operation—extraction of the 50th percentile—but we allow it on
the grounds that it is a common method for choosing a single representative value.

Singleton axes are not necessarily the result of collapsing an axis. In section 9, we
recommend singleton axes as the means of attaching characteristic single physical values
to a data variable, for instance the height or pressure of the surface on which a variable
is supplied. If no subgrid method is specified, the application knows only that the single
value characterises the data in some way. All information in the subgrid attribute is
entirely optional. For instance, a time-mean quantity should generally have a singleton
time dimension to indicate the range of times to which it applies, but it is not mandatory
to indicate in the subgrid attribute that it is a mean over time.

On the coordinate variable of a contracted axis, the optional old interval attribute
specifies the typical spacing between two adjacent coordinates of the uncontracted axis,

25



where “typical” is not well defined. The old interval attribute should be given in the
same units as the coordinates. Further information may be given by the the optional
old spacing attribute, which may have value uniform, indicating that the coordinates
were evenly spaced with the old interval specified (if any) and the cells contiguous, or
variable, if they were not evenly spaced but still contiguous, or disjoint, which means
there may have been gaps between them. The coordinates of the uncontracted axis may be
explicitly recorded in separate variables; if so, the main uncontracted coordinate variable
should be named by the attribute expand of the main contracted coordinate variable.

Area-averaging a longitude–latitude field to one of lower resolution: The
original resolution was 1 degree, and the field has been averaged into 10-degree boxes.

dimensions:

con_lat=18; // contracted dimension

con_lon=36;

lat=180; // original uncontracted dimension

lon=360;

variables:

float sst(con_lat,con_lon);

sst:axis="YX";

sst:long_name="sea surface temperature";

sst:subgrid="con_lat: mean con_lon: mean";

sst:units="degC";

float con_lat(con_lat); // contracted latitude axis

con_lat:bounds="bounds_con_lat";

con_lat:expand="lat";

con_lat:old_interval=1.0f; // original resolution in latitude

con_lat:long_name="latitude";

con_lat:units="degree_north";

float bounds_con_lat(con_lat,2);

float lat(lat); // original uncontracted latitude axis

lat:bounds="bounds_lat";

float bounds_lat(lat,2);

data:

con_lat=-85, -75, -65, ...;

bounds_con_lat=-90.,-80., -80.,-70., -70.,-60., ..., 80.,90.;

lat=-89.5, -88.5, -87.5, ...;

bounds_lat=-90,-89, -89,-88, -88,-87, ..., 89,90;

Instead of an area-average, the contracted field might instead have represented the sub-
grid spatial variation of SST. In that case, subgrid="con lat: con lon: standard

deviation".

Mean over time and longitude: Here, the time-mean zonal-mean humidity is given
as a function of latitude and height. The means have been formed over the complete time
and longitude intervals of the original data, so these dimensions are collapsed.

dimensions:

con_lon=1; // collapsed longitude dimension

26



con_time=1; // collapsed time dimension

lon=72;

sigma=6;

variables:

float humidity(con_time,sigma,lat,con_lon);

humidity:axis="TZYX";

humidity:long_name="specific humidity";

humidity:subgrid="con_time: mean con_lon: mean";

double con_time(con_time);

con_time:bounds="bounds_con_time";

con_time:old_interval=0.125; // originally at intervals of 3 h

con_time:units="days as %Y%m%d.%f";

float bounds_con_time(con_time,2);

float con_lon(con_lon);

con_lon:bounds="bounds_con_lon";

con_lon:long_name="longitude";

con_lon:modulo=360f;

con_lon:topology="circular";

con_lon:units="degree_east";

float bounds_con_lon(con_lon,2);

float sigma(sigma);

sigma:bounds="bounds_sigma";

sigma:long_name="sigma";

float bounds_sigma(sigma,2);

data:

con_time=19960901.0;

bounds_con_time=19960301.0, 19970301.0;

con_lon=180;

bounds_con_lon=0, 360;

sigma=0.99, 0.96, 0.92, 0.8, 0.5, 0.1;

bounds_sigma=0.98,1.00, 0.94,0.98, 0.86,0.94,

0.65,0.86, 0.30,0.65, 0.05,0.30;

This is a mean over the complete range of longitude from 1 March 1996 to 1 March 1997
(see section 25 concerning the time coordinate). The longitude axis indicates circular
topology because this was the case before it was collapsed; after collapse, the topology is
not really meaningful. If the humidity was subsequently meaned over the depth of the
atmosphere as well, subgrid would be suffixed with con sigma: mean, and con sigma

would have bounds 0.05 and 1.00.

If the same axis is contracted repeatedly, the methods may all be recorded in the
subgrid attribute of the data variable, but only the most recent old interval and
old spacing will be shown on the contracted coordinate variable. But if the axis be-
fore contraction is retained in the file (identified by an expand attribute), and was itself
the result of a contraction, it can record the previous old interval and old spacing.

Repeated operations of some methods can be regarded as equivalent to a single oper-
ation. For instance, meaning longitude cells of 1 degree width to 5 degrees, and then from
5 to 45 degrees, gives the same result as meaning in one step from 1 degree to 45 degrees
(apart from complications with missing data). Similarly, meaning a time axis from days

27



into months, then into seasons, and finally into years could be represented as a single
operation of meaning from days to years. In that case, the subgrid, old interval and
old spacing attributes need not be modified for successive operations. The choice of
whether to take this approach is left to the application.

23 Time variables and intervals

A “time variable” is one which represents date and time, which we will refer to hereafter
just as “time”. An “interval of time” is the difference between two times.

It would be possible to describe time in terms of six components (year, month, day,
hour, minute, second) in a netCDF file, using six component variables of various data
types. However, it is more efficient and for many purposes more convenient to represent a
time as a single number, giving the elapsed interval since a certain reference time, which
may be either implicit or explicit. We refer to conversion from the components of a
time into a single number as “encoding”, and the reverse as “decoding”. Encoding and
decoding are complicated because year and month are units with lengths that depend on
the date and the calendar in use, so special provisions are needed for time axes.

A “calendar” defines the set of valid dates (year-month-day combinations). The stan-
dard calendar is the Gregorian (the calendar of udunits), but climate models do not always
use this. For instance, in the calendar of the Hadley Centre GCM, all months have 30
days. The elapsed interval in units of fixed length (days, hours, minutes, seconds) between
two times will not necessarily be the same in two different calendars, because there may
be different numbers of valid dates between them. For example, the interval between 1
February 1996 and 1 March 1996 is one month, and equals 29 days in the standard calen-
dar, but 30 days in the Hadley Centre model calendar, since 30 February is a valid date
in the latter. Therefore the encoding of a time into an elapsed interval will depend on the
calendar, and it is necessary to know the calendar when converting. This standard per-
mits the use of the standard calendar (below, section 26) and of other calendars (section
27). The calendar attribute, described in the following sections, indicates the calendar
in use. If a time coordinate variable has no calendar attribute, the global calendar
attribute (section 5), if present, applies to it.

This standard permits two different methods, distinguished by their units, of encoding
a time into a number. These methods, referred to as “relative time” and “absolute time”,
are described in the following sections (24 and 25). Relative time is a more familiar
method, but absolute time offers important advantages.

Time variables may have an attribute time format, to specify a format for printing
the date and time, according to the conventions of the Unix (TM) date command.

Time coordinate variables must always explicitly include the units attribute; there is
no default value.

24 Relative time

A time encoded as a relative time gives the elapsed interval since a specified reference
time; units takes the form "time-unit since reference-time", as per the recommenda-

28



tions of the Unidata udunits package (but see below concerning the time-unit) e.g. a unit
of seconds since 1992-10-8 15:15:42.5 indicates seconds since 8 October 1992 at
3 hours, 15 minutes and 42.5 seconds in the afternoon, in Universal Coordinated Time
(time zones can also be handled). In order to decode the values on a relative time axis,
the application will in general need to know the calendar; the encoded time values are
meaningless without this knowledge. Furthermore, a given date may result in different
time values when encoded in two different calendars with the same units. For instance,
1996-2-1 15:00:00 is 62.625 days since 1995-12-1 0:0:0 in the standard calen-
dar, and 60.625 days since 1995-12-1 0:0:0 in the 360-day calendar.

The file udunits.dat defines second, minute, hour and day as units of time. Units of
months and years are disallowed by Appendix C of this standard, because they are not
well-defined; since udunits defines a year as a “tropical year” of 31556925.97 s (674.03 s
less than 365 days) and a month as exactly a twelfth of a year, use of these units will
probably not give the expected results. For example, 1 month since 1995-4-1 0:0:0

is treated by udunits as 30.4368 days since 1995-4-1 0:0:0, which is approximately
1995-5-1 10:29, not 1995-5-1 0:0:0. Also, 1 year since 1995-4-1 0:0:0 is about
1996-3-31 5:49, not 1996-4-1 0:0:0. The udunits unit common year (exactly 365
days) is permitted, but not recommended.

A relative time axis for instantaneous measurements of a quantity: Measure-
ments are made at noon on 2nd–5th June 1996.

dimensions:

time=4;

variables:

double time(time);

time:long_name="time";

time:units="days since 1996-1-1 0:0:0";

data:

time=1.5, 2.5, 3.5, 4.5;

A relative time axis for monthly means: Means are calculated for February, March
and April of 1990.

dimensions:

time=3;

variables:

double time(time);

time:bounds="bounds_time";

time:long_name="time";

time:units="days since 1990-1-1 0:0:0";

double bounds_time(time,2);

data:

time=45.0, 74.5, 105.0;

bounds_time=31.0,59.0, 59.0,90.0, 90.0,120.0;

In this example, the main time coordinates are merely representative values, being the
mid-points of their respective months. Decoded, they are 1990-2-15 0:0:0, 1990-3-16
12:0:0 and 1990-4-16 0:0:0.

29



25 Absolute time

This method of encoding time refers to the separate components of time, rather than
to a single unit of fixed length. It offers two advantages. Firstly, the encoded times
are meaningful and can be decoded into components of time without knowledge of the
calendar, although to calculate intervals between them this knowledge is still required.
Secondly, “partial” times can be encoded, which omit the year, or the “seasonal phase”
(time of year, time within the seasonal cycle), or the “diurnal phase” (time of day, time
within the diurnal cycle). By contrast, relative times can only be “complete” times, which
include information about all three of these.

The units attribute of absolute time takes the form "time-unit as time-string", The
possibilities with the recommended data types and their meanings are as follows:

Format Data type Interpretation
second as %S.%f float Diurnal phase
minute as %M.%f float Diurnal phase
hour as %H.%f float Diurnal phase
day as %Y%m%d.%f double Time
day as %Y%m%d int Year and seasonal phase
day as %m%d.%f double Seasonal phase and diurnal phase
day as %m%d int Seasonal phase
day as .%f float Diurnal phase
calendar month as %Y%m.%f double Year and seasonal phase
calendar month as %m.%f float Seasonal phase
calendar year as %Y.%f double Year and seasonal phase
calendar year as %Y int Year
calendar year as .%f float Seasonal phase

Standard abbreviations and plural forms of the unit names are acceptable, as usual. The
time-units calendar year and calendar month are units of time defined by this standard
(Appendix C).

The time-string codes show how the year, month, day within month and time within
day are encoded into a single number, after the fashion of the Unix (TM) date and printf

commands, thus:

Format letter Interpretation
%Y Year (including century)
%m Two-digit month (01=January)
%d Two-digit day within month
%H Hours since midnight
%M Minutes since midnight
%S Seconds since midnight
%f Floating-point fraction of the specified time-unit
. Position of decimal point

Since an encoded time is an ordinary number, leading zeroes in the integer part may be
omitted. It is not mandatory to use the suggested data types, which are recommended on
grounds of precision. If an integer data type is used for an absolute time variable whose

30



format includes a fraction %f, a fraction of zero is assumed. If a floating-point data type
is used for a format not including %f, any fraction is ignored.

In absolute time, 3 p.m. on 5th April 1998 is encoded with value 19980405.625 and
units="day as %Y%m%d.%f". The advantage of this method of encoding a complete time
is that it can be done without knowledge of the calendar, whereas if we encoded in rela-
tive time units of days since 1900-1-1, the value would be 35888.625 in the standard
calendar, and 35374.625 in the 360-day calendar. We also know, without reference to the
calendar, that the value 19980605.625, with the same units, is a time exactly two calendar
months later, and 19970405.625 is exactly one calendar year earlier. But to calculate
these intervals in other time units—days, hours, etc.—we still need to know the calendar.

The only complete form of absolute time is "day as %Y%m%d.%f". Note in particular
that the forms "calendar month as %Y%m.%f" and "calendar year as %Y.%f" are par-
tial times which imply no information about the diurnal phase. This is a very important
point. For instance, 1998.25 calendar year as %Y.%f means no more than “a quarter
of the way through 1998 as regards the seasonal cycle”. This meaning is the same in the
standard and 360-day calendars. Because this representation carries no information about
diurnal phase, it is not permitted to decode it to 1998-4-2 3:0:0 (i.e. 91.25 days from
the start of the year) in the standard calendar or 1998-4-1 0:0:0 in the 360-day calen-
dar. Similarly, 199804.3 calendar month as %Y%m.%f means “30% of the way through
April 1998 as regards the seasonal cycle”. Examples below show the use of such partial
times.

Note also that the only form of partial time which is composed of the seasonal and
diurnal phases is "day as %m%d.%f"; there is no method of encoding the seasonal phase
as a fraction of a calendar year or month in combination with the diurnal phase. Should
this be required, the application could construct it as a two-component time variable.
This exclusion seems reasonable because data which resolves both the seasonal and diurnal
cycles must belong to a known calendar (it will exhibit a certain number of days in a year,
for instance) and so its seasonal cycle can be labelled by month and day. The calendar-
independent representations of the seasonal cycle, shown in examples below, are more
useful when portions of the seasonal cycle have been averaged, in which case the seasonal
and diurnal cycles, if both present, will be on separate axes.

The forms of partial time which do not include .%f in the time-string are discrete
variables, rather than continuous. The interval of time in days or years covered by a
time axis in one of these forms is reckoned by including the both ends of the axis in
the count, or equivalently by adding one to the difference of the ends. For instance,
an axis with units="calendar year as %Y" that runs from 1930 to 1939 covers ten
years, not nine, since both ends are included. This is a partial time indicating only the
year, not the seasonal phase. Contrast this with an axis including the seasonal phase,
having units="calendar year as %Y.%f", and end points of 1930.0 and 1939.0. This
axis spans nine years, from the beginning of 1930 to the beginning of 1939, and does not
include 1939 itself. Examples below illustrate this point further.

An absolute time axis for instantaneous measurements of a quantity: Mea-
surements are made at noon on 2nd–5th June 1996.

dimensions:

time=4;

variables:

31



double time(time);

time:long_name="time";

time:units="days as %Y%m%d.%f";

data:

time=19960602.5, 19960603.5, 19960604.5, 19960605.5;

An absolute time axis for monthly means, encoded in days:

dimensions:

time=3;

variables:

double time(time);

time:bounds="bounds_time";

time:long_name="time";

time:units="days as %Y%m%d.%f";

double bounds_time(time,2);

data:

time=19900215.0, 19900316.5, 19900416.0;

bounds_time=19900201.0,19900301.0, 19900301.0,19900401.0,

19900401.0,19900501.0;

As in the relative time version of this example, the main time coordinates are the mid-
points of their respective months. Although they are encoded straightforwardly, their values
depend on the calendar. If one was comparing means over these months from data sources
which used different calendars, that might be inconvenient, and could be avoided as in the
next example.

An absolute time axis for monthly means, encoded in months:

dimensions:

time=3;

variables:

double time(time);

time:bounds="bounds_time";

time:long_name="year and seasonal phase";

time:units="calendar_months as %Y%m.%f";

double bounds_time(time,2);

data:

time=199002.5, 199003.5, 199004.5;

bounds_time=199002.0,199003.0, 199003.0,199004.0, 199004.0,199005.0;

This method shows directly that the main coordinates are half-way through their months.

A partial time defining just the year: An axis of this kind could be used to record
the number of occurrences of a particular kind of event:

dimensions:

year=3;

variables:

32



int year(year);

year:long_name="year";

year:units="calendar_year as %Y";

int count(year);

data:

year=1991,1992,1993,1994,1995;

count=0,2,1,0,1;

As discussed above, this axis spans five years. No boundaries are supplied, because each
element of count applies to just a single year. Hence, both the upper and the lower year
boundaries would be equal to their years.

Year and seasonal phase defined in calendar years: By contrast to the last exam-
ple, if it was appropriate to indicate that each count applied to the whole of the continuous
period of time of its respective year, this could be done thus:

variables:

double year(year);

year:bounds="bounds_year";

year:long_name="year and seasonal phase";

year:units="calendar_year as %Y.%f";

double bounds_year(year,2);

int count(year);

data:

year=1991.5, 1992.5, 1993.5, 1994.5, 1995.5;

bounds_year=1991.0,1992.0, 1992.0,1993.0, 1993.0,1994.0,

1994.0,1995.0, 1995.0,1996.0;

count=0,2,1,0,1;

The use of floating-point years allows us conveniently to represent exactly the beginning
and ending of a year and a point half-way through. In the standard calendar, of course,
the interval from 1992.0 to 1993.0 is longer in relative time than all the other years. But
for some purposes, it might be more useful to record that each interval is a calendar year.
This could be especially helpful when comparing data from different calendars.

Seasonal phase as a function of year: Here we show the date within the year of
a particular event, such as the highest daily maximum temperature, or the onset of the
monsoon, as a partial time within its year.

dimensions:

year=5;

variables:

int year(year);

year:long_name="year";

year:units="calendar_year as %Y";

int date(year);

date:long_name="seasonal phase";

date:units="day as %m%d";

data:

33



year=2011, 2013, 2027, 2028, 2051;

date=629, 627, 626, 703, 710;

The event concerned occurred on 29th June 2011, 27th June 2013, 26th June 2027, 3rd
July 2028 and 10th July 2051. Clearly the date variable could have been encoded as a
complete time, perhaps in relative time units, but this would have included redundant year
information.

A time variable which indicates seasonal phase but not year has a modulo of one year.
If it spans the entire seasonal cycle, it also has circular topology. Similarly, a time variable
indicating diurnal phase but not seasonal phase has a modulo of one day, and has circular
topology if it spans the entire diurnal cycle. These kinds of time coordinate are particular
useful for representing climatological time, in conjunction with other contracted time axes.
See section 28.

Average seasonal cycle expressed in months: Data for solar radiation as 3-monthly
averages.

dimensions:

time=4;

lat=72;

lon=96;

variables:

float sol(time,lat,lon);

sol:axis="TYX";

sol:long_name="vertical component of "

"solar radiative flux density";

sol:units="W m-2";

float time(time);

time:bounds="bounds_time";

time:long_name="seasonal phase";

time:modulo=12.0f;

time:topology="circular";

time:units="calendar_month as %m.%f";

float bounds_time(time,2);

data:

time=10.5, 13.5, 16.5, 19.5;

bounds_time=9.0,12.0, 12.0,15.0, 15.0,18.0, 18.0,21.0;

The first time point applies from the beginning of month 9 to the beginning of month
12, i.e. September to November inclusive. A representative main coordinate is given of
half-way through October. The second point runs to the beginning of month 15, which is
equivalent to 3 i.e. March under modulo 12, and thus covers December to February. The
use of the modulo allows the main coordinate to be specified as monotonic, as is generally
required. Because the axis is also circular, it would be permissible to rotate the values in
order to begin with a different season.

Average seasonal cycle expressed in years: The time coordinate above could equally
well be given in calendar years, thus:

34



dimensions:

double time(time);

time:bounds="bounds_time";

time:long_name="seasonal phase";

time:modulo=1.0;

time:topology="circular";

time:units="calendar_year as .%f";

float bounds_time(time,2);

data:

time=0.7917, 1.0417, 1.2917, 1.5417;

bounds_time=0.6667,0.9167, 0.9167,1.1667,

1.1667,1.4167, 1.4167,1.6667;

Here, the periods have been constructed as exactly quarters of a year, beginning two-thirds
of the way through the year. In the 360-day calendar, this is identical to the last example,
of periods of three months starting at the beginning of September, but in the standard
calendar it is slightly different, since a quarter of a year is not exactly three calendar
months.

26 Gregorian calendar

This standard recommends that Gregorian times be given in units of days as %Y%m%d.%f

with data type double (section 25), unless compatibility is essential with applications
that cannot process absolute times. In that case, Gregorian times may have units of time
formatted as per the recommendations of the Unidata udunits package, which specify a
unit and a reference time, i.e. a relative time (section 24). The recommended unit is days,
with data type double.

Intervals between two times in the standard Gregorian calendar can be calculated by
the Unidata udunits package. Udunits implements the mixed Gregorian/Julian calendar
system, as followed in England, in which dates prior to 1582-10-15 are assumed to use the
Julian calendar. Other software cannot be relied upon to handle the change of calendar
in the same way, so for robustness it is recommended that the reference date be later than
1582. If earlier dates must be used, it should be noted that udunits treats 0 AD as identical
to 1 AD.

Data type double gives a precision of about 16 decimal digits, which means that it can
resolve tenths of a second for years of up to O(1 million) in relative times. The precision
of absolute times is an order of magnitude worse, since a year looks like 10 000 days,
rather than 365. The larger the year, the worse the absolute precision. If very large years
are needed and the precision is not sufficient, the reference year will have to be modified
to keep the interval small enough.

If there is no calendar attribute applying to a time variable, the values are assumed
to be in the normal Gregorian calendar. This can be made explicit by setting calendar

to standard or gregorian.

35



27 Non-Gregorian calendars

It is recommended that times in other calendars should be encoded in units of days
as %Y%m%d.%f with data type double (section 25). Relative times are permitted, the
recommended units being days since 1-1-1 (midnight on 1 January of year 1), with
data type double. Since the Unidata udunits package can process only the standard
calendar, an extension will be required to process relative times for other calendars.

Apart from the Gregorian, calendars recognised by this standard are julian for the
Julian calendar (in which all years divisible by four are leap years), noleap for a calendar
with 365 days in every year, and 360 when each month has 30 days in every year. If any
other calendar is used, a suitable description should appear in the calendar attribute,
but generic applications cannot be expected to be able to encode and decode relative
times or calculate intervals in the calendar concerned.

28 Multiple time axes and climatological time

There is no bar on a data variable having more than one dimension in a particular quantity,
so long as the dimensions have different names. A particular use of this is to decompose
time into multiple partial time dimensions (section 25), of which one or may be collapsed
(section 22). This gives a method of indicating disjoint intervals of time belonging to
corresponding parts of the seasonal or diurnal cycles. When a variable has two or three
time axes, the first interval of time which they cover is assumed to begin at the earliest
boundary values of all the axes. If there is an uncollapsed axis in combination with
collapsed axes, it is a “climatological time” axis. There may be more than one—see below
for an example.

COARDS recommends use of year 0 to indicate climatological time. We do not favour
this convention. Firstly, it does not provide any way of recording which years were used
to make the climatology. Secondly, udunits treats year 0 and year 1 as identical (which is
reasonable because year 0 does not exist—there is no year between 1 AD and 1 BC).

A mean of a corresponding months in a number of years: A longitude–latitude
precipitation field with time axes to indicate the mean over the months of January in 1961
to 1990 inclusive:

dimensions:

con_year=1;

year=30;

month=1;

variables:

float precipitation(con_year,month,lat,lon);

precipitation:axis="-TYX";

precipitation:subgrid="month: mean con_year: mean";

int con_year(con_year);

con_year:bounds="bounds_con_year";

con_year:expand="year";

con_year:long_name="year";

con_year:old_interval=1;

36



con_year:units="calendar_year as %Y";

int bounds_con_year(con_year,2);

int year(year);

float month(month);

month:bounds="bounds_month";

month:long_name="seasonal phase";

month:units="calendar_month as %m.%f";

float bounds_month(month,2);

data:

con_year=1975;

bounds_con_year=1961, 1990;

year=1961, 1962, 1963, ..., 1990;

month=1.5;

bounds_month=1.0, 2.0;

The representative year is not likely to be particularly useful in this case; the important
information is the boundaries, which indicate the range of years used to form the climato-
logical mean. These years are also given explicitly, and optionally, for reference. Since the
con year axis has a discrete form of time (%.f does not appear in the time-string—see
section 25), we have to include both ends of the axis in working out how many years are
involved in the mean: bounds con year tells us that years from 1961 to 1990 were used,
which comes to 30 years, counting both 1961 and 1990.

Suppose we wish to include in the same data variable the mean over Decembers from
1960 to 1989. To do this, we give the month variable modulo=12.0f, which previously
was not needed, change the dimension to month=2 and the data to

month=0.5, 1.5;

bounds_month=0.0,1.0, 1.0,2.0;

According to the convention, the earliest time indicated by the combined axes is the lower
boundary of all of them, which is the start of the 0th month of 1961, equivalent to the
start of the 12th month of 1960 under modulo 12. Alternatively, we could have

bounds_con_year=1960,1989;

month=12.5, 13.5;

bounds_month=12.0,13.0, 13.0,14.0;

This is exactly equivalent. The last January used ends at the start of the 14th month of
1989, which is the start of February 1990, as before.

There is no standardised way to indicate missing months from the mean, say Decem-
ber 1974 in this case, except to include con year:old spacing="disjoint". The in-
formation could be included as a note in the subgrid attribute, thus "con year: mean

(December 1974 missing)".

Climatological seasonal means for several decades: This is an extension of the
previous case, and of the example of an average seasonal cycle in section 25. Here, the
axes are set up to indicate climatological means for two of the seasons in three successive
decades.

37



dimensions:

decade=3;

season=2;

variables:

float precipitation(decade,season,lat,lon);

precipitation:axis="-TYX";

precipitation:subgrid="season: mean decade: mean";

int decade(decade);

decade:bounds="bounds_decade";

decade:old_interval=1;

decade:units="calendar_year as %Y";

int bounds_decade(decade,2);

int season(season);

season:bounds="bounds_season";

season:calendar="standard";

season:modulo=1200;

season:units="day as %m%d";

int bounds_season(season,2);

data:

decade=1966, 1976, 1986;

bounds_decade=1961,1970, 1971,1980, 1981,1990;

season=115, 415;

bounds_season=1,228, 301,531;

Here, precipitation[0][0][*][*] is the data for December–February (i.e. 1 December
to 28 February inclusive) of the decade 1960–1970 (first December in 1960, last February
in 1970), while [2][1][*][*] is March–May 1981–1990. The choice has been made to
give the seasonal phase in months and days, rather than months alone; hence the modulo
is 1200 rather than 12. Under modulo 1200, midnight on 1 December can be expressed
equivalently as 1 or 1201. If 1201 were specified, it would mean that the first interval of
time began on 1 December 1961 (rather than 1960), taking the combination of the lower
boundaries of both time axes; the value 1 is a year earlier. The drawback of this %m%d

scheme is that it is awkward or impossible to give accurate representative dates for the
middle of the periods, especially since February has variable length. The absolute time
format %m.%f for seasonal phase is better from this point of view. The season axis is not
shown as having circular topology because no information is implied about the other two
seasons.

Average early June maximum temperatures for several years: In this example,
the dimensions indicate that maximum daily temperatures (between 9 a.m. on the day
of record and 9 a.m. of the previous day) were recorded for 1–10 June, and an average
maximum found for these ten days in each of the years 1980–1984.

dimensions:

year=5;

con_season=1;

con_day=1;

variables:

float temperature(year,con_season,con_day);

38



temperature:axis="T--";

temperature:subgrid="con_day: maximum con_season: mean";

int year(year);

year:long_name="year";

year:units="calendar_year as %Y";

int con_season(con_season);

con_season:bounds="bounds_con_season";

con_season:long_name="seasonal phase";

con_season:old_interval=1;

con_season:units="day as %m%d";

int bounds_con_season(con_season,2);

float con_day(con_day);

con_day:bounds="bounds_con_day";

con_day:long_name="diurnal phase";

con_day:modulo=24.0f;

con_day:units="hour as %H.%f";

float bounds_con_day(con_day,2);

data:

year=1980, 1981, 1982, 1983, 1984;

con_season=605;

bounds_con_season=601, 610;

con_day=-3.0;

bounds_con_day=-15.0, 9.0;

The diurnal phase of -15 h means 15 hours before the beginning of the day in question, i.e.
9 a.m. on the previous day. No bounds are given for the year, because it is a discrete quan-
tity, and there is no further information which could be added. But if the five years were av-
eraged together, this would collapse the year axis, and the extreme years of 1980 and 1984
would be recorded as the boundaries of the collapsed axis. If, say, 1981 were not used in
forming the average, the collapsed axis would have attribute old spacing="disjoint".

Daily values as an average of subdaily values: Instantaneous pressure measure-
ments are made at intervals of 3 hours (first measurement at midnight) throughout the
days 6 May to 9 June 1937, and daily means formed from midnight to midnight.

dimensions:

con_subday=1;

day=35;

variables:

float pressure(day,con_subday);

pressure:axis="T-";

pressure:subgrid="con_subday: point con_subday: mean";

float con_subday(con_subday);

con_subday:bounds="bounds_con_subday";

con_subday:long_name="diurnal phase";

con_subday:old_interval=0.125f;

con_subday:old_spacing="uniform";

con_subday:units="days as .%f";

float bounds_con_subday(con_subday,2);

39



int day(day);

day:long_name="year and seasonal phase";

day:units="days as %Y%m%d";

data:

con_subday=0.5;

bounds_con_subday=0.0, 0.875;

day=19370506, 19370507, ..., 19370608, 19370609;

Note that the con subday axis is shown with two subgrid methods, referring to subgrid
variation before and after its collapse. The only point here in having separate axes for
day and diurnal phase is to show when the first and last instantaneous measurements were
made in each day. If this is not important to record, the two axes could be merged together
thus:

dimensions:

day=35;

variables:

float pressure(day);

pressure:subgrid="day: point day: mean";

float day(day);

con_subday:bounds="bounds_day";

con_subday:old_interval=0.125f;

con_subday:long_name="time";

con_subday:old_spacing="uniform";

con_subday:units="days as %Y%m%d.%f";

float bounds_day(day,2);

data:

day=19370506.5, 19370507.5, ..., 19370608.5, 19370609.5;

bounds_day=19370506.0,19370507.0, 19370507.0,19370508.0, ...,

19370608.0,19370609.0, 19370609.0,19370610.0;

If the 35 days were then averaged together, the date axis would collapse with bounds of
19370506.0 and 19370610.0. The subgrid attribute would not need modification since it
is already shown as a mean over the day axis.

Average diurnal cycle: The following axes are appropriate for the average diurnal
cycle of precipitation rate in July 1970–1979 as a function of latitude:

dimensions:

con_year=1;

con_month=1;

hour=8;

lat=45;

con_lon=1;

variables:

float ppnrate(con_year,con_month,hour,lat,con_lon);

ppnrate:axis="--TYX";

ppnrate:subgrid="con_lon: mean con_month: mean "

"con_year: mean";

40



ppnrate:units="kg m-2 s-1";

int con_year(con_year);

con_year:bounds="bounds_con_year";

con_year:old_interval=1;

con_year:units="calendar_year as %Y";

int bounds_con_year(con_year,2);

float con_month(con_month);

con_month:bounds="bounds_con_month";

con_month:units="calendar_month as %m.%f";

float bounds_con_month(con_month,2);

float hour(hour);

hour:bounds="bounds_hour";

hour:modulo=24.0f;

hour:topology="circular";

hour:units="hour as %H.%f";

float bounds_hour(bounds_hour,2);

data:

con_year=1975;

bounds_con_year=1970, 1979;

con_month=7.5;

bounds_con_month=7.0, 8.0;

hour=1.5, 4.5, 7.5, 10.5, 13.5, 16.5, 19.5, 22.5;

bounds_hour=0.0,3.0, 3.0,6.0, 6.0,9.0, 9.0,12.0,

12.0,15.0, 15.0,18.0, 18.0,21.0, 21.0,24.0;

29 Invalid values in a data variable

Invalid values are any which fall outside the valid range or equal the fill value, as indicated
by the Unidata-standard attributes described here. An invalid value indicates bad data i.e.
a software problem, which is a different circumstance from unknown or missing data (see
section 30). Invalid values are not permitted in a coordinate variable, but the attributes
which define the valid range may be used in boundary variables (section 20) to indicate
unbounded cells.

The attribute valid min is a scalar specifying the minimum valid value for a vari-
able. The attribute valid max specifies the maximum valid value, while valid range

is a vector of two numbers specifying the minimum and maximum valid values, in that
order, equivalent to specifying values for both valid min and valid max attributes. Any
of these attributes define the valid range. The attribute valid range must not be defined
if either valid min or valid max is defined. Generic applications should treat values out-
side the valid range as invalid. The type of each valid range, valid min and valid max

attribute should match the type of its variable. The Unidata special treatment of byte
type is not included here as we do not recommend use of that type (see section 3).

A scalar attribute with the name FillValue and of the same type as its variable is
used as the fill value for the variable. The netCDF package defines a default fill value for
each type of variable, so it is not necessary to define your own FillValue attribute if the
default is suitable. The purpose of the fill value is to save the applications programmer

41



the work of prefilling the data and also to eliminate the duplicate writes that result
from netCDF filling in undefined data with its default fill value, only to be immediately
overwritten by the programmer’s preferred value. This value is considered to be a special
value that indicates undefined data, and is returned when reading values that were not
written. The FillValue should be outside the range specified by valid range (if used)
for a variable. In cases where the data variable is packed using the scale factor and
add offset attributes (section 32), the FillValue attribute applies the numbers as
packed, so they must be checked against it before unpacking.

If none of valid min, valid max or valid range is defined then generic applications
should define a valid range by using the fill value (whether defined explicitly or by default);
if the fill value is positive then it defines a valid maximum, otherwise it defines a valid
minimum. For integer types, there should be a difference of 1 between the fill value and
this valid minimum or maximum. For floating point types, the valid extreme should have
a magnitude which is half the magnitude of the fill value. We recommend a factor of
two, rather than a difference of one bit, because it is easier for applications programmers.
There is no special treatment for byte as we do not recommend that type (see section 3).

30 Missing values in a data variable

Missing values are not permitted in a coordinate variable, so this section applies only
to data variables. The missing value attribute indicates a value that is used for data
that are unknown or “missing”. This attribute is not be treated in any special way
by the netCDF API, unlike the FillValue attribute (section 29). The missing value

should be outside the valid range (section 29), so that generic applications will treat it
appropriately. The netCDF data type of the missing value attribute should match the
netCDF data type of the data variable that it describes. In cases where the data variable is
packed via the scale factor and add offset attributes (section 32), the missing value

attribute matches the type of and should be compared with the data after unpacking. This
standard is unlike COARDS in giving a particular interpretation to the distinction between
missing value and FillValue.

31 Compression by gathering

To save space in the netCDF file, it may be desirable to eliminate points from data arrays
which are invariably missing. Such a compression can operate over one or more adjacent
axes, and is accomplished with reference to a list of the points to be stored. The list is
constructed by considering a mask array which has just the axes to be compressed, and
mapping this array onto one dimension without reordering. The list is the set of indices
in this one-dimensional mask of the required points. In the compressed array, the axes to
be compressed are all replaced by a single axis, whose dimension is the number of wanted
points. The wanted points appear along this dimension in the same order they appear
in the uncompressed array, with the unwanted points skipped over. Compression and
uncompression are executed by looping over the list.

The list is stored as the coordinate variable for the compressed axis of the data array.
Thus, the list variable and its dimension have the same name. The list variable has a

42



string attribute compress, containing a blank-separated list of the dimensions which were
affected by the compression in the order of the CDL declaration of the uncompressed
array. The presence of this attribute identifies the list variable as such. The list, the orig-
inal dimensions and coordinate variables (including component, associated and boundary
variables), and the compressed data variables with all the attributes of the uncompressed
variables are written to the archived netCDF file. The uncompressed data variables can
be reconstituted exactly as they were using this information, except that their original
variable names are not known.

Horizontal compression of a three-dimensional array: We eliminate sea points
at all depths in a longitude–latitude–depth array of soil temperatures. In this case, only
the longitude and latitude axes would be affected by the compression. We construct a list
landpoint(landpoint) containing the indices of land points.

dimensions:

lat=73;

lon=96;

landpoint=2381;

depth=4;

variables:

long landpoint(landpoint);

landpoint:compress="lat lon";

float landsoilt(depth,landpoint);

landsoilt:axis="Z-";

landsoilt:long_name="soil temperature";

landsoilt:units="K";

float depth(depth);

float lat(lat);

float lon(lon);

data:

landpoint=363, 364, 365, ...;

Since landpoint[0]=363, for instance, we know that landsoilt[*][0] maps on to
point 363 of the original data with dimensions (lat,lon). This corresponds to indices
[3][75].

Compression of a three-dimensional field: We compress a longitude–latitude–depth
field of ocean salinity by eliminating points below the sea-floor. In this case, all three
dimensions are affected by the compression, since there are successively fewer active ocean
points at increasing depths.

variables:

float salinity(oceanpoint);

salinity:axis="-";

long oceanpoint(oceanpoint);

oceanpoint:compress="depth lat lon";

float depth(depth);

float lat(lat);

float lon(lon);

43



This information implies that the salinity field should be uncompressed to an array with
dimensions (depth,lat,lon).

32 Compression using a scale and offset

This standard endorses the use of the optional Unidata-standard attributes scale factor

and add offset for data and coordinate variables. These attributes can be used to provide
simple number compression (packing), to store low-resolution floating-point data as small
integers in a netCDF file. After the data values of the variable have been read in, they
are to be multiplied by the scale offset, and have add offset added to them. If both
scale factor and add offset attributes are present, the data are scaled before the offset
is added. When scaled data are written, the application should first subtract the offset and
then divide by the scale factor. This procedure is concerned only with storage. It does not
affect the unit of the quantity. For instance, a pressure variable with values in the range
900.0–1100.0 Pa could be converted to short integers in the range ±20000 by subtracting
1000 and dividing by 0.005 i.e. multiplying by 200. The units of the compressed variable
are still recorded as pascals.

This standard is more restrictive than the netCDF Users’ Guide with respect to the
use of the scale factor and add offset attributes; ambiguities and precision problems
related to data type conversions are resolved by these restrictions. If the scale factor

and add offset attributes are of the same data type as the associated variable no re-
strictions apply; the unpacked data is assumed to be of the same data type as the packed
data. However, if the scale factor and add offset attributes are of a different data
type from the variable (containing the packed data) then in files adhering to this standard
the variable may only be of type short or long. We exclude byte on grounds discussed
in section 3. The attributes scale factor and add offset (which must match in data
type) must be of type float or double. The data type of the attributes should match the
intended type of the unpacked data. (It is not advised to unpack a long into a float as
there is a potential precision loss.) Users should note that Unidata may provide a built-in
means of packing data in netCDF files in future.

44



A Attributes

Attribute T Use Section(s) Description
add offset N CD 29 32 Additive offset for packing data
appendices S G 5 Version number of these appendices
associate S CD 18 19 Identifies variables containing alterna-

tive sets of coordinates
axis S D 9 16 18 Identifies spatiotemporal dimensions
bounds N C 20 22 28 Identifies a bounday variable
calendar S GD 5 23 26 27 Calendar used for encoding time axes
comment S G 5 Additional information about the file
component S CD 17 20 Identifies variables containing compo-

nents of a variable
compress S D 31 Records dimensions which have been

compressed by gathering
Conventions S G 5 Identifies the netCDF standard
coordinates S CD 18 Synonym for associate
expand S C 22 28 Coordinates before contraction
FillValue N D 29 Indicator of invalid data
FORTRAN format S CD 12 Format for a variable
history S GD 5 12 Evolution of the data in the file
institution S GD 5 12 Who made or supplied the data
long name S CD 12 Long description of a physical quantity
modulo N CD 12 14 25 Arithmetic modulo of a variable
north pole N D 10 Long.,lat. of rotated North Pole
old interval N C 22 28 The typical separation between points

on an axis before contraction
old spacing S C 22 28 Indicates the spacing of points along an

axis before contraction
positive S C 16 Direction of positive for a vertical axis
production S GD 5 12 How the data was produced
quantity S CD 12 Standardised description of a physical

quantity
quantity table S G 5 12 URL of the quantity table
scale factor N CD 29 32 Multiplicative factor for packing data
subgrid S D 21 22 28 Records how the data values represent

subgrid variation
topology S C 13 14 25 Topology of an axis (circular or not)
time format S CD 23 Format for printing a time and date
units S CD 12 14 15 23–27 Units of a physical quantity
valid max N CD 20 29 Largest valid value of a variable
valid min N CD 20 29 Smallest valid value of a variable
valid range N CD 29 Smallest and largest valid values of a

variable

T is S for string, N for numeric.

Use is composed of G for global, C for coordinate variables (including multidimensional
coordinate variables), D for data variables.

45



B Methods of representing subgrid variation

See section 21.

Method Units Description
cell u Value is a property of the whole cell (e.g. an integral)
maximum u Maximum
median u Median
mid-range u Average of maximum and minimum
minimum u Minimum
mean u Mean (average)
mode u Mode (most common)
point u Value applies at gridpoint
standard deviation u Standard deviation
variance u2 Variance

Units: u means the units of the quantity whose subgrid variation is represented by this
method.

C Modifications to udunits.dat

See section 11.

The unit unity is defined as a dimensionless constant equal to one.

The unit degrees is not permitted, because it creates ambiguities when attempting
to differentiate longitude and latitude coordinate variables. This unit does not appear in
the current version of the file.

The units calendar month and calendar year are units of time, but cannot be con-
verted into each other or any other units of time, except that multiples of 12 calendar
months equal integral numbers of calendar years. The units year and month are not
allowed, because they can cause confusion.

46



D Long names for quantities

See section 12. This Appendix is not yet available. As well as existing as part of this
standard, it will be made available on the web.

Version long name units

1.0 depth below the surface m

1.0 height above the surface m

1.0 latitude degree north

1.0 longitude degree east

1.0 pressure Pa

1.0 soil temperature K

1.0 specific humidity unity

1.0 temperature K

1.0 time s

Version: The version of the appendices at which this quantity was introduced.
long name: Case, spaces and punctuation are not significant in the long name.

47


