
Proposed netCDF conventions for climate data

Jonathan Gregory1, Bob Drach2 and Simon Tett1

(1) Hadley Centre, UK Met Office; (2) PCMDI, temporarily at the Hadley Centre

10th June 1997

1 Purposes

This standard defines a set of conventions adopted in order to promote the interchange
and sharing of files created with the netCDF Application Programmer Interface (API).
This standard is based upon version 2.4 of netCDF. Documentation of the netCDF API
may be found in the “NetCDF Users’ Guide”, Version 2.4, February 1996, available
from URL http://www.unidata.ucar.edu/packages/netcdf/ or via anonymous ftp at
ftp.unidata.ucar.edu.

This standard is intended for use with climate data, and was designed with data gener-
ated by GCMs particularly in mind. We recognise that there are limits to what a standard
can practically cover; we restrict ourselves to issues which we believe to be of common and
frequent concern in the design of climate metadata. This standard is mostly additional
to the conventions sponsored by COARDS (ftp://ftp.unidata.ucar.edu/netcdf/-
Conventions/COARDS). In the following standard, parts which are identical to or para-
phrases of the COARDS standard are prefixed with coards, and new material with
new. Material from the Unidata netCDF users’ guide is marked unidata. All Unidata
recommendations are supported here unless noted to the contrary. Comments indicate
the places where there are differences between the standards. Comments and examples
are not part of the standard, and are given in emphasised text.

coards: This standard also refers to the udunits standard supported by Unidata.
The udunits package is available via anonymous ftp at ftp.unidata.ucar.edu. new:
See section 11 for details of how the package is used by this convention to define units for
physical quantities.

2 Filename

coards: NetCDF files should have the file name extension .nc.

3 Data types

new: The netCDF data types char, short, long, float, and double are all acceptable.
All numeric types are signed. The byte data type, which is functionally identical to char,
is not recommended because its signedness may become ambiguous in future versions of
netCDF. The COARDS convention deprecates char, rather than byte.

1



new: NetCDF does not support a character string type, so these have to be repre-
sented as char arrays. In this standard, we refer to them as type “string”. A string array
must be implemented as a two-dimensional character data variable, serving as a vector
of fixed-length strings, the second dimension of its CDL declaration (leading dimension
in terms of Fortran) being a constant StringMaxLength, recorded as a dimension in the
netCDF file.

4 Attributes

coards: This standard describes many attributes (some mandatory, others optional),
but a file may also contain non-standard attributes. Such attributes do not represent a
violation of this standard. Application programs should ignore attributes that they do
not recognise or which are irrelevant for their purposes. unidata: Conventional attribute
names should be used wherever applicable. Non-standard names should be as meaningful
as possible. Before introducing an attribute, consideration should be given to whether
the information would be better represented as a variable. In general, if a proposed
attribute requires ancillary data to describe it, is multidimensional, requires any of the
defined netCDF dimensions to index its values, or requires a significant amount of storage,
a variable should be used instead. new: When this standard defines string attributes
which make take various prescribed values, the possible values are given in lower case.
However, applications programs should not be sensitive to case in these attributes. See
Appendix A for a list of attributes described by this standard.

5 Global attributes

coards: Although not mandatory, the Unidata-standard attribute history is recom-
mended to record the evolution of the data contained within a netCDF file. Applications
which process netCDF data can append their information to the history attribute.

coards: The Unidata-standard attribute Conventions is recommended to reference
this standard.

new: Use of the string attributes institution and production is recommended.
The attribute institution specifies who produced or supplied the data. We prefer this
name to “center” or “centre” because the two possible spellings could cause confusion. The
attribute production indicates how the data was produced. If it was model-generated,
production should name the model and its version, as specifically as could be useful.
If it is observational, production should characterise it e.g. "surface observation" or
"radiosonde". A further string attribute comment is proposed, to contain extra informa-
tion about the file, and additional attributes may be included as required. The Hadley
Centre, for example, will include an attribute source to name the model integration.

new: The float attribute appendices is recommended to record the version number
of the appendices to this standard used by the application which generated the file (see
section 12).

new: The calendar attribute (see section 24) may be recorded as a global attribute.
The global calendar attribute is interpreted as a default for all time axes.

2



6 Variable names

coards: Variable names should begin with a letter and be composed of letters, digits,
and underscores. new: Case is significant in netCDF names, but it is recommended that
names should not be distinguished purely by case i.e. if case is disregarded, no two names
should be the same.

7 Data variables

new: The netCDF variables which contain the physical data are referred to as “data
variables”, also referred to as “primary variables” by Unidata. Apart from the general
naming rules for variables (above, section 6), the names of data variables are not stan-
dardised by these conventions (since files may in general contain multiple data variables
of the same physical quantity).

8 Axes and dimensionality of a data variable

new: A data variable may have any number of dimensions, including zero, and the
dimensions must all have different names. COARDS strongly recommends limiting the
number to four, but we wish to allow greater flexibility. The dimensions of the variable
define the axes of the quantity it contains. Dimensions other than those of space and time
may be included. One example is a dimension in electromagnetic radiation wavelength
for a data variable of radiative flux. Components of vector or tensor quantities could be
contained in a single data variable by giving the variable a dimension over components.
While there exist advantages for manipulating such a variable in memory, we see no
strong advantage in introducing this complexity into the netCDF description, and do not
recommend it. Under certain circumstances, one may need more than one dimension
in a particular quantity (see section 29 concerning multiple time axes). For instance,
a data variable containing a two-dimensional probability density function might correlate
the temperature at two different vertical levels, and hence would have temperature on both
axes.

coards: If any or all of the dimensions of a data variable have the interpretations of
“date or time” (T), “height or depth” (Z), “latitude” (Y), or “longitude” (X) then those
dimensions should appear in the relative order T, then Z, then Y, then X in the CDL
definition corresponding to the file. N.B. In terms of Fortran, this means X is the first
dimension of the array. Non-spatiotemporal dimensions should be placed to the left of
the spatiotemporal dimensions i.e. as trailing dimensions in terms of Fortran.

new: Each dimension of a data variable must have a coordinate variable supplying
the coordinates of the points along that axis (section 9). The coordinates of points within
the data variable are the simple ordered tuples formed by associating values from the
coordinate variables.

new: Dimensions may be of any size, including unity. When a single value of some
physical quantity applies to all the values in a data variable, the recommended means of
attaching this information to the variable is by use of a singleton dimension (a dimension
of size unity) with a one-element coordinate variable. For example, a data variable on
a pressure level would use a singleton pressure dimension to record the level. Singleton
dimensions also result from contractions, described in section 23.

3



9 Coordinate variables

new: A one-dimensional netCDF variable associated with an axis of one or more data
variables is called a “coordinate variable”. A coordinate variable whose dimension name
is identical to its own name is referred to as a “main coordinate variable” in this standard,
when it is necessary to distinguish it from other types of coordinate variable (sections 17
and 21). Each axis of a data variable must have a main coordinate variable, but other
types are optional. Apart from the general naming rules for variables (above, section 6),
the names of coordinate variables are not standardised by these conventions (since files
may in general contain multiple coordinate variables of the same orientation).

unidata: The values in a main coordinate variable must be strictly monotonic (all
values are different and either increasing or decreasing). new: If a main coordinate
variable is merely a “dummy”, not containing any physical information, its values should
be set equal to their indices (0, 1, 2, . . . ). This is the netCDF default for an omitted
coordinate variable. This standard requires it to be made explicit.

10 Coordinate systems

new: A coordinate system for the Earth’s surface which is rectilinear but based on a
polar axis other than the normal geographical axis is referred to as a “rotated grid”.
To describe rotated grids, a two-element float attribute north pole is attached to the
data variable, specifying the (longitude,latitude) coordinates of the rotated north pole.
If the attribute is absent and relevant, it is assumed to have the value (0.,90.) i.e. the
geographical north pole.

new: In some systems, the axes covering the Earth’s surface do not define a rectilinear
grid. We do not wish necessarily to exclude non-rectilinear systems. For the moment, this
standard is undefined for these systems, and we invite comments from potential users on
the appropriate definition. The COARDS standard excludes non-rectilinear systems. In
principle, any coordinate system can be handled, albeit clumsily, by replacing the relevant
two or more axes by by a single axis which indexes the points, and providing ancillary
coordinate variables to specify the coordinates, point by point (see section 17).

11 Units

coards: The udunits package includes a file udunits.dat, which lists collections of unit
names. The names given in the most recent version of this file and their plural forms will
be regarded as acceptable unit names for this standard, with a few modifications which
will be listed in Appendix C to this standard. COARDS lists some modifications within
the standard, but we would prefer to put in place a means to allow future modifications to
be made easily. new: Users of this standard should not define their own units, because
this would make their files less portable; requests for new units should be directed to
Unidata.

new: The udunits package also defines a means for linear transformation of units by
a scale factor and an offset. This convention is allowed when it is natural to express a
unit in such a form e.g. density of sea-water in kg m−3 in excess of 1000 kg m−3, which
can be specified to udunits as "kg m-3 @ 1000". COARDS does not permit the use of
this facility. It can also be used to specify a scale factor and/or offset for a dimensionless

4



quantity e.g. sea-ice concentration in tenths (no unit). It should not be used as a means
of data compression, for which an alternative is provided (see section 34).

12 Physical quantity of a variable

new: These conventions standardise three attributes for specifying the physical quantity
of data and coordinate variables. All of them are strings:

1. units, formatted as per the recommendations in the Unidata udunits package, with
extensions for time (see section 26). This attribute is mandatory unless the quantity
is dimensionless (a pure number). Dimensionless quantities will not generally have
units; a unit string specifying a linear transformation alone is permissible. For
instance, a unit of tenths is given as "0.1". There are a few defined dimensionless
units, such as percent. There is no need for a wide variety of dimensionless units
for quantities like sea-ice concentration, cloud fraction, probability and so on; this
descriptive information is the quantity rather than the units.

2. quantity, a short descriptive name. The quantity attribute is optional for most
variables, but mandatory for coordinate variables of longitude, latitude, vertical
axes and time (see sections 14, 15, 16 and 24). If the quantity attribute is present,
it must be one from a list which constitutes Appendix E of this standard (see
below). The use of a standard list aims to clarify whether data from different sources
is comparable. The list will include all quantities which are used as coordinate
variables. The list will also define the physical dimensions of the quantity by stating
an appropriate unit. The units and the quantity of the data variable must be
compatible. Appendix E will indicate the version number of the appendices at
which each quantity was introduced. In conjunction with the appendices attribute
(section 5), this enables the application to deduce the entire set of distinct quantities
known to the application which generated the file.

3. long name, a long descriptive name. It should not include the units.

The long name is useful as the title of a plot of a data variable, or the title of the axis
of a coordinate variable. In its absence, the quantity may be used, or, failing that, the
name of the variable itself. In addition, other model-dependent attributes may included
to define the quantity of a variable. The Hadley Centre model will give each data variable
integer stash and submodel attributes, for example.

Whether two physical quantities are different or the same is often not a question with
a well-defined answer. Certainly if they are the same, they must have the same unit, but
various quantities with the same unit may have to be distinguished e.g. temperature and
soil temperature. In practice, the most specific description applicable should be used.
We intend to expand the list of quantities in Appendix E on an ongoing basis in response to
requests by users of this standard, since we cannot foresee all the possibilities, and we will
err on the side of expansion, rather than restriction, when it is unclear whether a newly
requested quantity is identical to one already listed. However, quantities which differ only
with regard to surfaces (sections 30), linear unweighted contractions (section 23) or other
distinctions which can represented simply by attributes described in later sections will not
be regarded as distinct physical quantities e.g. net downward shortwave radiation at the
surface, and net downward shortwave radiation at the top of the atmosphere.

5



new: The optional modulo attribute of a data variable, if present, records a number
which can be added or subtracted without altering the validity or physical significance of
the quantity. This is most likely to be useful for longitude coordinate axes, with a modulo

of 360.
new: We note that the Unidata-standard FORTRAN format attribute may be useful

for both coordinate and data variables.

13 Topology of an axis

new: An axis with “circular topology” is one which can be legitimately transformed by
shifting all the points one place along the axis, moving the last point to the beginning,
any number of times. The main coordinate variable of an axis with circular topology is
distinguished by the presence of an attribute topology="circular". A longitude axis
which circles the whole globe is an example. The value linear or the absence of this
attribute indicates an axis with “linear topology”. The topology is indicated only by the
main coordinate variable, but since it is the property of the axis it applies to any ancillary
coordinate variables (section 17) as well.

new: When a circular axis is rotated, the main coordinate values must be altered in
order to remain monotonic. Therefore the main coordinate variable requires a modulo

(section 12).

14 Longitude dimension

coards: Coordinate variables representing longitudes must always explicitly include the
units attribute; there is no default value. The units attribute will be a string for-
matted as per the recommendations in the Unidata udunits package. The recommended
unit of longitude is degrees east (eastward positive). Also acceptable are degree east,
degree E, and degrees E. The unit degrees west (westward positive) is not recom-
mended because it implies a negative conversion factor from degrees east.

new: A longitude coordinate variable must have an attribute quantity="longitude".
coards: Such a variable is also identifiable from its units string. The COARDS con-
vention relies on the unit as the only way to identify a longitude variable. This standard
uses the quantity, but requires the units to be specified as well for compatibility with
COARDS.

new: Longitude axes should have the attribute modulo=360, indicating that they
may be interpreted modulo 360. Thus, for example, -180, 180, and 540 are all valid
representations of the International Dateline and 0 and 360 are both valid representations
of the Prime Meridian. COARDS assumes that longitudes may always be treated in this
way. Since we have introduced the modulo attribute, we require that it should be specified
to indicate this. But the presence of a modulo does not mean that the axis necessarily
has circular topology (section 9); a longitude axis covering only part of the globe cannot
have its points rotated. coards: Note that the sequence of numerical longitude values
stored in the netCDF file must be monotonic in a non-modulo sense for a main coordinate
variable of longitude.

6



15 Latitude dimension

coards: Coordinate variables representing latitudes must always explicitly include the
units attribute; there is no default value. The units attribute will be a string formatted
as per the recommendations in the Unidata udunits package. The recommended unit of
latitude is degrees north. Also acceptable are degree north, degree N, and degrees N.

new: A latitude coordinate variable must have an attribute quantity="latitude".
coards: Such a variable is also identifiable from its units string. The COARDS con-
vention relies on the unit as the only way to identify a latitude variable. This standard
uses the quantity, but requires the units to be specified as well for compatibility with
COARDS.

16 Vertical (height or depth) dimension

new: Whereas the two horizontal dimensions are usually longitude and latitude, whose
direction is well defined, a variety of quantities may be used for the vertical axis. The
quantity attribute is mandatory for the vertical axis. The direction of positive, whether
up or down, may be useful for applications displaying or processing the data. For this
reason Appendix E to this standard will state the usual direction of positive for all quan-
tities which are commonly used as vertical axes. This information should be taken only
as guidance, and may be overridden by the application.

The COARDS standard requires the units of the vertical axis to be selected from a
defined list, in order that this axis can be recognised by its units. It gives special status to
units of pressure, for which the direction of positive is defined, and introduces a mandatory
positive attribute for vertical axes with other units.

We have adopted a different approach for a number of reasons. Firstly, to require units
for the vertical axis means defining dimensionless units for any dimensionless quantity
one might wish to use for that axis. This seems inconsistent with the treatment of a
data variable which happened to contain a dimensionless physical quantity, for which the
standard would not require that units be invented. Secondly, the quantity attribute is
more informative than the units, and for most practical axes will clarify the direction
of positive. Thirdly, the direction of positive is mostly an issue for displaying the data,
and is to some extent a matter of personal preference. If we introduce special treatment
for the vertical axis, we should also include information about how any other axis should
be displayed. For instance, when latitude is shown on the horizontal axis of a plot, is
north on the left or the right? This is the same kind of question, but it strikes us as
more a matter for a graphics application to consider than one to be recorded in the data
structure. Fourthly, the vertical dimension is recognisable from the order of dimensions
(see section 8), which allows any application expecting such a dimension to know where
to find it without any further indication. The absence of the positive attribute means
that vertical axes with coordinates other than pressure will not necessarily be recognised as
such by COARDS software. If this is a concern, the positive attribute could optionally
be included with one of the allowed values up or down, indicating the sense of the direction
of positive.

For example, if an oceanographic netCDF file encodes the depth of the surface as
0 and the depth of 1000 meters as 1000 then the axis would use attributes as follows:
units="meters", quantity="depth". If, on the other hand, the depth of 1000 meters
were represented as −1000 then the value of the quantity attribute would have been

7



height. The COARDS positive attribute in these two cases would have values down

and up respectively.

17 Ancillary coordinate variables

new: A single axis might require more than one set of coordinate values, for various pur-
poses described in sections 18, 19 and 20. The additional sets of values required to specify
the axis should be contained in extra one-dimensional variables (formally two-dimensional
for string-valued variables). We refer to these as “ancillary coordinate variables”. Ancil-
lary coordinate variables are recognised as being associated with their axes by having the
same dimension, but distinguished from the main coordinate variable for the axis by not
sharing the name of the dimension.

18 Component coordinate variables

new: A continuous physical coordinate may require more than one number to specify
it at each point. We refer to these as “components”. This standard requires that a
main coordinate variable should nonetheless be supplied which represents a combination
of the components that can be used to order the points on the axis. As usual, the main
coordinate variable must be monotonic.

new: The values of the components are recorded in ancillary coordinate variables
referred to as “component coordinate variables”. Unlike the main coordinate variable,
the components do not need to be monotonic. The names of the component coordinate
variables are recorded as a comma-separated list in a component string attribute of the
main coordinate variable.

An example is the hybrid vertical coordinate η ≡ p/p0 + σ, used in the Hadley
Centre GCM. Atmospheric model levels are specified in terms of (p, σ) pairs, where p is
pressure, p0 is a constant and σ is fraction of surface pressure (which is variable). The
η value is a linear combination of the two, which cannot be uniquely decomposed back into
(p, σ) as the coordinate variable eta(eta), say, with p and σ in ancillary coordinate
variables pressure(eta) and sigma(eta). The eta variable would have a string attribute
component="pressure,sigma". Information about how to relate the components to the
combination would reside in the application.

19 Associated coordinate variables

new: A qualitatively different situation arises where an axis has a number of alternative
ways of being labelled, providing different kinds of information. We refer to the alternative
sets as “associated coordinates” and store them in ancillary coordinate variables. The
main coordinate variable records the names of these variables as a comma-separated list
in an associate string attribute. The main coordinate variable must be monotonic, as
usual, but associated coordinate variables need not be.

One example is a vertical axis where one wishes to store both the physical coordinate
and the ordinal model level number. The latter could be recorded as an associated coor-
dinate variable. In this instance, if the physical coordinate was the η of the section 18,
it would also have component coordinate variables. Another example is the value of a
quantity along a one-dimensional trajectory. In such a case, we might have a coordinate

8



variable containing distance along the trajectory and associated coordinate variables giving
the latitude and longitude of each point.

20 Bundles

new: If several data arrays containing the same physical quantity have one or more
identical axes, but are distinguished by the values of other singleton coordinate variables,
it may be convenient to store them in the same data variable. The common axes of the
separate arrays become axes of the combined variable. One or more additional axes are
introduced to “bundle up” the separate arrays. Such an axis does not correspond to a
continuous physical coordinate. It acts simply as an index of the bundled-up arrays. For
instance, the Hadley Centre GCM can generate timeseries of the values of quantities at
individual points. Typically, timeseries from many different points are produced of the
same quantity at the same sampling times. It is natural to contain this information in a
data variable with two dimensions. One dimension is the common time axis, specifying the
sampling times, which are the same for all the points sampled. The other dimension is not
a continuous physical coordinate; it is simply being used to “bundle up” the timeseries, the
points being irregularly scattered in a space of two or more dimensions. This axis might
have a meaningful coordinate variable, such as a station number (in which case it must
be monotonic), but otherwise it may be no more than an index.

new: The singleton values of the separate arrays are recorded in associated coordi-
nate variables for the bundling dimension. They should not be interpreted as continuous
coordinates. In the timeseries example, the latitude and longitude of the points would be
recorded in associated coordinate variables. It might be desirable to have a string-valued
coordinate variable as well, to name the points. For a set of temperature timeseries,
suppose that the dimension points specified the number of points, and times the num-
ber of sampling times. The data variable might be temperature(times,points) and
the time axis times(times). The main coordinate variable for the points axis would
be points(points). The associated coordinate variables would be latitude(points),
longitude(points) and names(points,StringMaxLength). This same form could be
used for observed timeseries from stations.

Another application could be that of vertical profiles at sets of points; for example, a
vertical temperature profile through the ocean, or data from a radiosonde. One dimension
is the height or depth, with the physical vertical coordinate. The other has a main coordi-
nate variable containing just an index, with associated coordinate variables recording the
geographical location of the points.

This section raises the question of how best to store a single timeseries, or a single
vertical profile. Following the scheme of this section, it could be contained in a two-
dimensional data variable with the bundling axis being of size unity. The associated infor-
mation such as latitude or longitude would then be stored in singleton coordinate variables,
all associated with the same dimension. Alternatively, these values could be recorded as
separate singleton dimensions (following section 8). We have no recommendation for this.
Either scheme could be appropriate; which is more natural perhaps depends on how the
data was extracted from the continuous axes.

9



21 Boundary coordinate variables

new: Along a dimension, the values might relate to points (at the coordinate values) or to
contiguous or non-contiguous cells. The boundaries of the cells should be defined as well
as the cell coordinate values. The convention is to define an additional two-dimensional
“boundary coordinate variable” with a left-hand dimension (trailing dimension in Fortran
terms) of size two. The values for which this dimension has index 0 (numbering from 0
i.e. in C notation) supply the boundaries with the smaller coordinate values, and those
with index 1 the large values, where “smaller” and “larger” refer simply to numerical
comparison, not to a physical direction. The name of the boundary coordinate variable
is recorded in a string attribute bounds of the main coordinate variable. We recommend
that the it should be named by the coordinate dimension with the prefix bounds . Thus,
for instance, a coordinate variable lat(lat) might have attribute bounds="bounds lat"

pointing to a boundary coordinate variable bounds lat(2,lat) (declared as in CDL).
In C notation, lat[0] gives the coordinate of the first point, bounds lat[0][0] its
lower boundary, bounds lat[1][0] its upper boundary. In Fortran notation, the dec-
larations are lat(lat) and bounds lat(lat,2), and the relevant elements are lat(1),
bounds lat(1,1), bounds lat(1,2). Supplying upper and lower boundaries separately
allows for the possibility that the cells might not be contiguous; they might even overlap.

new: Boundary coordinate variables are recommended if the main coordinate values
are not evenly spaced, or if the dimension has a size of unity. If the coordinates are
evenly spaced, and boundaries are not specified, generic applications may assume that
the main coordinates lie at the centres of their cells. Boundary coordinate variables may
be supplied for ancillary coordinate variables as well as main coordinate variables. The
upper and lower boundaries of ancillary coordinates are ordered so as to correspond with
those of the main coordinate.

22 Point values versus average values

new: A subcell attribute may be given to the main coordinate variable for a dimen-
sion to specify whether the data values represent a point value (subcell="point") or
an average over the cell (subcell="cell") in that dimension. It is conceivable that the
interpretation as point or average values might differ for the various dimensions. An
important example of the need to distinguish arises for timeseries, which might be instan-
taneous values (such as is usual with pressure measured at synoptic stations) or values
representing a time-mean (such as the rainfall rate derived from the total accumulated
over the observation period).

23 Contracted dimensions

new: A contracted dimension is one in which all data points share the entire contracted
axis. It indicates the relationship of the data variable which is being described to another
variable of higher dimensionality. A contracted dimension will have a size of unity, a single
representative coordinate value and boundary coordinate values supplying the range of
the uncontracted axis. If the uncontracted axis had the attribute subcell="point",
the boundaries of the contracted axis will be the extreme point coordinate values of the
uncontracted axis; if the uncontracted axis had subcell="cell", the boundaries will be

10



the extreme boundary coordinate values.
new: The contraction attribute of the coordinate variable specifies the operation

which contracted the axis; permitted values are detailed in Appendix B and include sum,
mean, max, min, sd, var. Contractions are limited to common and well-defined statistical
operations performed using the values of the data variable and possibly the coordinate
variable, which may be needed to determine statistical weights. If weights have been
used, the quantity used for weighting may be recorded in a weight attribute, and should
be one of the quantities listed in Appendix E (section 12). Note that some operations,
such as taking a weighted sum or a variance, imply that the quantity in the data variable
does not have the same physical unit as the quantity which had the uncontracted axis. In
this case, the units and quantity should be altered; the contraction does not suffice.
This standard also states that two variables related by a non-linear contraction, such as
the standard deviation, necessarily have different quantity attributes, even if they have
the same units. This will be reflected in Appendix E. For instance, “orographic height”
and “standard deviation of orographic height” are regarded as different quantities, while
“maximum orographic height” is treated as the same quantity as “orographic height”.

new: The optional min interval and max interval attributes specify the mini-
mum and maximum distance between two adjacent coordinates of the uncontracted axis.
Equality implies that the uncontracted coordinates were evenly spaced.

The most obvious example of a contracted dimension is the time information belonging
to an array where time is not otherwise a dimension. The beginning and ending times
of the period over which a time-mean (for example) has been calculated form the lower
and upper time boundaries of a contracted dimension of time. (See below, section 24,
for more on time axes.) Zonal and meridional means are further common examples of
contracted axes, whose boundary coordinate variables would specify the ranges of longitude
and latitude over which the mean had been formed.

new: In some cases, several axes are contracted simultaneously. If the operation
cannot be peformed on them separately, probably because it involves a non-linear op-
eration, the contraction has to be recorded as affecting more than one axis at a time.
This is done by replacing all the affected dimensions with one new singleton dimension
carrying the contraction attribute. The information from the individual contracted
axes is recorded on singleton coordinate variables associated with the contracted axis (see
section 19). For instance, the standard deviation involves a non-linear operation, so an
area-weighted standard deviation must be performed on both horizontal axes at once. On
calculating the area-weighted standard deviation of an array of temperature(lat,lon),
we might record the result in sd temperature(area), with area as a dimension of size
unity, having a dummy coordinate variable area(area) with attributes contraction="sd"
and weight="area" and associated coordinate variables lat(area) and lon(area) with
boundaries, units, etc.

24 Time axes

new: A “time axis” is one which represents date and time, which we will refer to hereafter
just as “time”. Time is usually defined by a set of up to six numbers (year, month, day,
hour, minute, second) of various data types. It would be possible to define it thus in a
netCDF file, using six ancillary coordinate variables. However, it is more efficient and for
many purposes more convenient to encode a time into a single number, giving the elapsed
interval since a certain reference. The units of the interval and the reference time are

11



matters of convention.
new: A “calendar” defines the set of valid dates (year-month-day combinations). The

standard calendar is the Gregorian (the calendar of udunits), but climate models do not
always use this. For instance, in the calendar of the Hadley Centre GCM, all months have
30 days. The elapsed interval between two dates will not necessarily be the same in two
different calendars, because there may be different numbers of valid dates between them.
For example, the interval between 1 February 1996 and 1 March 1996 is 29 days in the
Gregorian calendar, but 30 days in the Hadley Centre model calendar, since 30 February
is a valid date in the latter. Therefore the encoding of a time into an elapsed interval will
depend on the calendar, and it is necessary to know the calendar when converting.

new: This standard permits the use of the standard calendar (below, section 25) and
of other calendars (section 26). In addition, we propose and recommend a new calendar
(section 27), which has the advantage of being able to encode a date which is legal in any
of the other calendars, and which can therefore be used in all cases.

coards: Time coordinate variables must always explicitly include the units at-
tribute; there is no default value. new: The quantity is also mandatory, having one
of the values time or unitime (see section 27 concerning the latter). A time coordinate
variable will be identifiable by its units and quantity. The quantity in conjunction
with the calendar attribute, when required, will indicate the calendar in use and how
it has been encoded. The calendar attribute is described in the following sections. If a
time coordinate variable has no calendar attribute, the global calendar attribute (sec-
tion 5), if present, applies to it. The attribute time format can be included to specify
a format for printing the date and time, according to the conventions of the Unix (TM)
date command.

25 Gregorian calendar

coards: Intervals between two times in the standard Gregorian calendar can be cal-
culated by the udunits package. This calendar is actually the mixed Gregorian/Julian
calendar system, as followed in England. Dates prior to 1582-10-15 are assumed to use
the Julian calendar. Time coordinates in this calendar may have units of time formatted
as per the recommendations in the Unidata udunits package, which specify a unit and
a reference time e.g. a unit of seconds since 1992-10-8 15:15:42.5 indicates seconds
since 8 October 1992 at 3 hours, 15 minutes and 42.5 seconds in the afternoon, in Uni-
versal Coordinated Time (time zones can also be handled).

new: The file udunits.dat defines second, minute, hour and day as units of time.
Units of months and years must not be used, because both are of variable length. Since
udunits defines a year as exactly 365 days and a month as exactly a twelfth of a year, use
of these units will not always give the expected results. For example, 1 month since

1997-4-1 0:0:0 is treated by udunits as 30.4368 days since 1997-4-1 0:0:0, not
1997-5-1 0:0:0. Note, however, that this standard deals only with the encoding of
time in the netCDF file. An application which processes such a file may have an interface
which handles intervals defined in months or years, if desired.

new: This standard recommends that Gregorian times be given in units of days

since 1-1-1 i.e. midnight on 1 January 1 AD, in data type double. (Note that udunits
treats 0 AD as identical to 1 AD.) This data type gives a precision of about 16 decimal
digits, which means that it can resolve tenths of a second for years of up to around 10,000
AD. The larger the year, the worse the absolute precision. If this precision is not sufficient,

12



use of a different reference time, in order to make the year smaller, is recommended.
new: If there is no calendar attribute applying to a time coordinate variable in

any standard unit of time, the coordinates are assumed to be in the normal Gregorian
calendar, encoded following the udunits convention. This can be made explicit by setting
calendar to standard or gregorian.

26 Non-Gregorian calendars

new: It is recommended that times in other calendars should be encoded in data type
double with a units string of days since 1-1-1, interpreted as days since midnight on
1 January of year 1 in the calendar concerned. If a different base time is chosen, the
udunits syntax “days since date-and-time” should be used. The udunits package itself
can process only the standard calendar. An extension will be required for other calendars.
Shorter units than days may be used, but units of months and years are not allowed, as
above.

new: Apart from the Gregorian, calendars recognised by this standard are julian

for the Julian calendar (in which all years divisible by four are leap years), noleap for
a calendar with 365 days in every year, and 360 when each month has 30 days in every
year. If any other calendar is used, a suitable description should appear in the calendar

attribute, but generic applications cannot be expected to be able to encode and decode
times in the calendar concerned.

27 Unimonth calendar

new: This standard proposes a new means of representing times, namely the “unimonth”
calendar, which assumes all months have 100 days. A time coordinate variable in the
unimonth calendar is indicated by a quantity attribute of unitime. This standard rec-
ommends that times should be given in days since 1-1-1 in data type double in the
unimonth calendar. Dates can be converted into this unitime form and back unambigu-
ously, according to

days = ((year− 1) × 12 + (month− 1)) × 100 + day in month− 1

+ (hour + (minute + second/60)/60)/24.

This formula defines the time 0 days as midnight on 1 January in year 1. We are not,
of course, suggesting that the unimonth calendar should be adopted as the calendar of a
climate model, or in place of the Gregorian calendar. It is introduced only to provide a
convenient means of encoding times.

new: The main reason for proposing this convention is that all dates (year, month,
day) in any of the calendars recognised by this standard (sections 25 and 26) are valid in
the unimonth calendar. Hence any such dates can be converted into and out of unitime.
Moreover, no knowledge of the specific calendar is required to do this. This knowledge is
still required for calculating some intervals of time (see below, section 28), so when the
unimonth calendar is used to encode a time axis into unitime, the calendar attribute
should be used to record the original calendar.

13



28 Intervals of time

new: An interval of time is the difference between two times. The quantity is as for
absolute time; an interval is distinguished by the lack of a reference time in its units

string e.g. plain seconds, compared with seconds since 1992-10-8 15:15:42.5. Both
data variables and coordinate variables might contain intervals of time, mostly probably
expressing elapsed time since some event e.g. days since the onset of the monsoon. A
further specialised application is in the representation of climatological time using multiple
time axes, described below (section 29).

new: To be unambiguous, a time interval must be expressed in units which have a
well-defined value. We identify two different kinds of time interval. For intervals defined
as numbers of days or shorter units of time, there is no problem, as these units are well
defined by udunits. We recommend the use of days with data type double, but allow the
use of shorter units of time instead. However, months and years are not well defined (as
discussed above, section 24), so must not be used as units of intervals of time. We may
nonetheless have need to express time intervals in terms of years and months (and possibly
a remainder of days or less), so we need a means of encoding these unambiguously. A
climatological season, for example, is three months.

new: Any interval of time expressed as a number of years, months, days, hours,
minutes and seconds can be unambiguously converted to an interval in unitime (see above,
section 24) and back without knowledge of the calendar. This standard recommends that
intervals of the second kind above (involving months or years) should be enocoded in data
type double in days of unitime, according to the formula

days = (years× 12 + months) × 100 + days in month

+ (hours + (minutes + seconds/60)/60)/24.

Shorter units than days can also be used. Intervals of the first kind (not involving months
or years) less than 100 days in length can also be represented in unitime.

An example may help to clarify these two kinds of interval further. The interval
between 1 February 1996 and 1 March 1996 is 29 days in the Gregorian calendar, but 30
days in the Hadley Centre model calendar. If we wish to record this interval as a number
of days, we can do so as 29 days or 30 days respectively, of either ordinary time or
unitime. If, however, our intention is to record that it is one month, we encode it as 100

days of unitime. The interval between 1 February and 1 March is 100 days of unitime
(i.e. one month) in all years in all calendars. The importance of the distinction is that it
tells us how to add an interval to an absolute time.

29 Multiple time axes and climatological time

new: There is no bar on a data variable having more than one dimension in a particular
quantity, so long as the dimensions have different names. A particular need for this arises
for multiple time dimensions, when there has been a contraction over at least one of
them. This provides a means of describing “climatological time”, in which the data does
not apply to a specific time or times.

new: This need must be described firstly with reference to the original uncontracted
dimension spanning a period of time which contains repetitions of a cycle or cycles (most
often the seasonal or diurnal cycles). This dimension can be decomposed into an absolute

14



time, labelling the beginning of the cycle or cycles, and offsets giving the phases within
the cycles. The absolute time is coded just as for a normal time axis (section 24). We
recommend that the offsets be specified in days, as described above for intervals of time
(section 28), with a quantity of time or unitime, as appropriate. Offsets in shorter
units than days are also acceptable. The first offset is relative to the absolute time, the
second offset is relative to the first offset, etc. (In practice, there is not likely to be
more than one offset.) These time dimensions should be successive dimensions of the
data variable, in order to indicate their grouping, and should appear in order, with the
absolute time dimension first in the sense of a CDL declaration (last in Fortran terms).
Each offset time variable should have a string attribute wrt (“with respect to”), naming
the next time dimension in the group. The first of them might have subcell="point"

or subcell="cell", and might have boundary coordinate values, but all the others are
taken as point values. The actual time of a data value is obtained by adding up the values
of all its time coordinates. Unless the offsets are all exact numbers of months and years,
this addition may require knowledge of the calendar, which is an attribute of the absolute
time axis. The calendar attribute is not required for the offsets.

To take an example, consider a time dimension which has coordinates at daily intervals
from 1 June to 30 June in each of the five years 1990–1994. This dimension has a size
of 30 × 5 = 150. The first coordinate is 1 June 1990 and the last is 30 June 1994.
This single time dimension can be decomposed into two: an absolute dimension of size 5
and values at yearly intervals from 1 June 1990 to 1 June 1994, and an offset of size 30
and values of 0, 1, . . . , 29 days. The data value for 13 June 1992 appears at indexes 2
and 12 (numbering from 0) in these two dimensions, respectively, and its time coordinate
is obtained by adding 12 days to 1 June 1992. A decomposition into three might be
appropriate if the original time coordinate had values at, say, 3-hourly intervals. The third
dimension would then have a size of 8 and values of 0, 3, 6, . . . , 21 hours (expressed in
days). Such a representation would be appropriate for quantities measured instantaneously
at 3-hourly intervals. If, on the other hand, they were means over successive intervals of
3 hours, the third dimension would have subcell="cell", lower time boundaries of 0, 3,
6, . . . , 21 hours and upper time boundaries of 3, 6, 9, . . . , 24 hours.

new: Once a time dimension has been decomposed in this way, any of the resulting
time dimensions can be contracted, as for any other dimension. That is the main reason
for performing the decomposition, and it is most useful when it is the leading dimensions
which are contracted, since a contracted trailing time dimension can be merged into a
preceding uncontracted time dimension with no loss of information. After contraction,
boundary coordinate variables should record the first and last times of the contracted
dimension, and min interval and max interval the extreme spacings between the co-
ordinates. The combination of a contracted absolute time dimension and one or more
offset-time dimensions indicates climatological time. COARDS recommends use of year
0 to indicate climatological time. We do not favour this convention. Firstly, it does not
provide any way of recording which years were used to make the climatology. Secondly,
udunits treats year 0 and year 1 as identical (which is reasonable because year 0 does not
exist—there is no year between 1 AD and 1 BC).

In the example above, we might contract the first time axis. It would then have a
size of one, boundaries of 1 June 1990 and 1 June 1994, and minimum and maximum
intervals of one year. The data variable would contain 5-year means for the individual
days of June. If we contracted the second dimension as well, it would have a size of one
also, boundaries of 0 and 29 days (or 0 and 1 month, for time-means over the days rather

15



than instantaneous values), minimum and maximum intervals of 1 day. This would be a
5-year June mean. The first contracted dimension tells us it is made from five years, and
the second that it uses one month from each year. If we had retained the third dimension
uncontracted, we would have a set of values for times at 3-hourly intervals within an
average June day.

30 Special surfaces

new: A data variable may be defined as existing on a surface, the general description of
a surface being a set of points which have two or more independent dimensions and other
dimensions which are single-valued functions of the independent dimensions. Existence
on a surface is a property of the data variable, and should be indicated by giving it a
surface attribute identifying the surface, one from a list which constitutes Appendix D of
this standard. To provide a longer description of the surface than the surface attribute
itself, a surface name attribute may be included. For example, a data variable of pressure
at mean sea level would have an attribute surface="sea level". We intend to expand
Appendix D in response to requests, as for Appendix E. Note that surfaces which can be
defined by the numeric value of physical quantities will not be included. For example, the
surface 1.5 m above the ground is not a special surface in the sense of this section, as a
variable can be described as being on this surface by giving it a singleton height coordinate
with a value of 1.5 m.

new: If a plain description is insufficient to characterise the surface, then the val-
ues of the dependent coordinates which define it must be supplied as additional data
variables. These variables should be named as a comma-separated list in an attribute
surface coords. If it were necessary to know the depth of mean sea-level below ground,
this could be done by specifying surface coords="mslheight" and including a data vari-
able mslheight(lat,lon) (CDL declaration), lat and lon also being dimensions of the
pressure variable.

31 Invalid values in a data variable

new: Invalid values are not permitted in a coordinate variable, so this section applies
only to data variables. Invalid values are any which fall outside the valid range or equal
the fill value, as indicated by the Unidata-standard attributes described here. An invalid
value indicates bad data i.e. a software problem, which is a different circumstance from
unknown or missing data (see section 32).

unidata: The attribute valid min is a scalar specifying the minimum valid value for a
variable. The attribute valid max specifies the maximum valid value, while valid range

is a vector of two numbers specifying the minimum and maximum valid values, in that
order, equivalent to specifying values for both valid min and valid max attributes. Any
of these attributes define the valid range. The attribute valid range must not be defined
if either valid min or valid max is defined. Generic applications should treat values out-
side the valid range as invalid. The type of each valid range, valid min and valid max

attribute should match the type of its variable. The Unidata special treatment of byte
type is not included here as we do not recommend use of that type (see section 3).

coards: A scalar attribute with the name FillValue and of the same type as its
variable is used as the fill value for the variable. The netCDF package defines a default

16



fill value for each type of variable, so it is not necessary to define your own FillValue

attribute if the default is suitable. The purpose of the fill value is to save the applications
programmer the work of prefilling the data and also to eliminate the duplicate writes
that result from netCDF filling in undefined data with its default fill value, only to be
immediately overwritten by the programmer’s preferred value. This value is considered to
be a special value that indicates undefined data, and is returned when reading values that
were not written. The FillValue should be outside the range specified by valid range

(if used) for a variable. new: In cases where the data variable is packed using the
scale factor and add offset attributes (section 34), the FillValue attribute applies
the numbers as packed, so they must be checked against it before unpacking.

new: If none of valid min, valid max or valid range is defined then generic appli-
cations should define a valid range by using the fill value (whether defined explicitly or by
default); if the fill value is positive then it defines a valid maximum, otherwise it defines a
valid minimum. For integer types, there should be a difference of 1 between the fill value
and this valid minimum or maximum. For floating point types, the valid extreme should
have a magnitude which is half the magnitude of the fill value. We recommend a factor of
two, rather than a difference of one bit, because it is easier for applications programmers.
There is no special treatment for byte as we do not recommend that type (see section 3).

32 Missing values in a data variable

new: Missing values are not permitted in a coordinate variable, so this section applies
only to data variables. The missing value attribute indicates a value that is used for
data that are unknown or “missing”. This attribute is not be treated in any special way
by the netCDF API, unlike the FillValue attribute (section 31). The missing value

should be outside the valid range (section 31), so that generic applications will treat it
appropriately. The netCDF data type of the missing value attribute should match the
netCDF data type of the data variable that it describes. In cases where the data variable is
packed via the scale factor and add offset attributes (section 34), the missing value

attribute matches the type of and should be compared with the data after unpacking. This
standard is unlike COARDS in giving a particular interpretation to the distinction between
missing value and FillValue.

33 Compression by gathering

new: To save space in the netCDF file, it may be desirable to eliminate points from
data arrays which are invariably missing. Such a compression can operate over one or
more adjacent axes, and is accomplished with reference to a list of the points to be
stored. The axes to be compressed might not be all the axes. For example, we might
wish to compress a three-dimensional longitude-latitude-depth array of soil temperatures
by eliminating sea points at all depths. In this case, only the longitude and latitude axes
would be affected by the compression. The list is constructed by considering a mask array
which has just the axes to be compressed, and mapping this array onto one dimension
without reordering. The list is the set of indices in this one-dimensional mask of the
required points. In the compressed array, the axes to be compressed are all replaced by a
single axis, whose dimension is the number of wanted points. The wanted points appear
along this dimension in the same order they appear in the uncompressed array, with the

17



unwanted points skipped over. Compression and uncompression are executed by looping
over the list.

new: The list is stored as the coordinate variable for the compressed axis of the
data array. Thus, the list variable and its dimension have the same name. The list
variable has a string attribute compressed, containing a comma-separated list of the di-
mensions which were affected by the compression in the order of the CDL declaration of
the uncompressed array. The list, the compressed arrays and the original dimensions
are written to the archived netCDF file. The uncompressed arrays can be reconsti-
tuted using this information. In the example above, suppose the original data variable
is soilt(level,lat,lon). We construct a list landpoint(landpoint) containing the
indices of land points in a mask array landmask(lat,lon). We compress the data vari-
able to a new variable landsoilt(level,landpoint) and record the original dimensions
in an attribute compressed="lat,lon" of the landpoint list variable.

34 Compression using a scale and offset

coards: This standard endorses the use of the optional Unidata-standard attributes
scale factor and add offset for data and coordinate variables. These attributes can
be used to provide simple number compression (packing), to store low-resolution floating-
point data as small integers in a netCDF file. After the data values of the variable have
been read in, they are to be multiplied by the scale offset, and have add offset added
to them. If both scale factor and add offset attributes are present, the data are
scaled before the offset is added. When scaled data are written, the application should
first subtract the offset and then divide by the scale factor. new: This procedure is
concerned only with storage. It does not affect the unit of the quantity. For instance,
a pressure variable with values in the range 900.0–1100.0 Pa could be converted to short
integers in the range ±20000 by subtracting 1000 and dividing by 0.005 i.e. multiplying
by 200. The units of the compressed variable are still recorded as pascals.

coards: This standard is more restrictive than the netCDF Users’ Guide with re-
spect to the use of the scale factor and add offset attributes; ambiguities and preci-
sion problems related to data type conversions are resolved by these restrictions. If the
scale factor and add offset attributes are of the same data type as the associated
variable no restrictions apply; the unpacked data is assumed to be of the same data type
as the packed data. However, if the scale factor and add offset attributes are of a
different data type from the associated variable (containing the packed data) then in files
adhering to this standard the associated variable may only be of type short or long.
We exclude byte on grounds discussed in section 3. The attributes scale factor and
add offset (which must match in data type) must be of type float or double. The
data type of the attributes should match the intended type of the unpacked data. (It is
not advised to unpack a long into a float as there is a potential precision loss.) Users
should note that Unidata may provide a built-in means of packing data in netCDF files in
future.

18



A Attributes

Attribute Section(s) Description
add offset 31 34 Additive offset for packing data
appendices 4 Version number of these appendices
associate 19 Identifies variables containing alternative sets

of coordinates
bounds 21 Identifies a variable containing boundary coor-

dinate values
calendar 4 24 25 26 27 29 Calendar used for encoding time axes
comment 4 Additional information about the file
component 18 Identifies variables containing components of a

coordinate variable
compressed 33 Records the dimensions which have been com-

pressed by gathering
contraction 23 Records how an axis was contracted to a point
Conventions 4 Identifies the netCDF standard
FillValue 31 Indicator of invalid data
FORTRAN format 12 Format for printing the values of a variable
history 4 Evolution of the data in the file
institution 4 Who made or supplied the data
long name 12 Long description of a physical quantity
max interval 23 29 The maximum separation between points on

an axis before contraction
min interval 23 29 The minimum separation between points on an

axis before contraction
modulo 12 Arithmetic modulo of a coordinate variable
north pole 10 Geographical location of rotated North Pole
positive 16 Direction of positive for a vertical axis
production 4 How the data was produced
quantity 12 14 15 16 24 27 Short description of a physical quantity
scale factor 31 34 Multiplicative factor for packing data
subcell 22 29 Indicates whether data values are points sam-

ples or cell averages
surface 30 Identifies a surface on which a quantity is de-

fined
surface coords 30 Identifies dependent variables defining a sur-

face
surface name 30 Description of a surface
topology 13 Topology of an axis (circular or not)
time format 24 Format for printing a time and date
units 12 14 15 24 28 Units of a physical quantity
valid max 31 Largest valid value of a variable
valid min 31 Smallest valid value of a variable
valid range 31 Smallest and largest valid values of a variable
weight 23 Weighting for points used when performing a

statistical contraction of an axis
wrt 29 Indicates the time axis to which a time offset

applies

19



B Contractions

Contraction Units Quantity Description
max u N Maximum
min u N Minimum
mean u N Mean
sd u Y Standard deviation
sum without weight u N Sum
sum with weight u× w Y Weighted sum
var u2 Y Variance

Units: u means the units of the original quantity, and w the units of the weighting
quantity
Quantity: “N” means the quantity does not change, “Y” that it does change

C Modifications to udunits.dat

None at present. coards: The unit degrees is not permitted, because it creates ambi-
guities when attempting to differentiate longitude and latitude coordinate variables. This
unit does not appear in the current version of the file.

D Surfaces

This Appendix is not yet available. It will contain entries such as:

Surface Description
surface Surface of the land or sea
sea level Mean sea-level
TOA Top of the atmosphere

Surface: Case, spaces and punctuation are not significant in the name of the surface.
Description: This is an explanation of the surface for the purpose of this Appendix
only. Applications should not rely on this Appendix as a lookup table for explanations,
however. If the surface needs a description, it should be attached to the variable in a
surface name attribute.

20



E Quantities

This Appendix is not yet available. As well as existing as part of this standard, it will
be made available as a flat ASCII file for use by applications programs. It will contain
entries such as:

Version Quantity Unit Positive Description
1.0 height m U Height above the surface of

the land or sea
1.0 depth m D Depth below the surface of

the land or sea
1.0 pressure Pa D Pressure
1.0 longitude degree east – Longitude
1.0 latitude degree north – Latitude
1.0 time d – Time (in any calendar ex-

cept unimonth)
1.0 unitime d – Time (in the unimonth cal-

endar)
1.0 temperature K – Temperature
1.0 soil temperature K – Temperature of the soil
1.0 precipitation rate kg m−2 s−1 – Rate of precipitation in all

phases together

Version: The version of the appendices at which this quantity was introduced.
Quantity: Case, spaces and punctuation are not significant in the name of the quantity.
Positive: For quantities commonly used as vertical axes, “U” means that values increase
upwards along the axis, “D” means downwards. No value is indicated for quantities not
used in this way.
Description: This is an explanation of the quantity for the purpose of this Appendix
only. Applications should not rely on this Appendix as a lookup table for explanations,
however. If the quantity needs a description, it should be attached to the variable in a
long name attribute.

21


