NetCDF Climate and Forecast (CF)
Metadata Conventions

Brian Eaton, Jonathan Gregory, Bob Drach, Karl Taylor, Steve Hankin,

John Caron, Rich Signell, Phil Bentley, Greg Rappa, Heinke Hock,

Alison Pamment, Martin Juckes, Martin Raspaud, Randy Horne, Jon Blower,
Timothy Whiteaker, David Blodgett, Charlie Zender, Daniel Lee, David Hassell,
Alan D. Snow, Tobias Kolling, Dave Allured, Aleksandar Jelenak,

Anders Meier Soerensen, Lucile Gaultier, Sylvain Herlédan, Fernando Manzano,
Lars Barring, Christopher Barker, Sadie Bartholomew, Thomas Lavergne

Version v1.12.0-rc7-24-gh724218, 05 June, 2025 17:12:45Z:

Climate and Forecast Conventions version 1.13-draft has no DOI yet: 10.5281/zenodo.FFFFFF

357wl This document is dedicated to the public domain following the Creative Commons Zero
v1.0 Universal Deed.

The Climate and Forecasting Conventions website https://cfconventions.org/ contains additional
resources and provides further information.

DON’T use the following reference to cite this version of the document, as it is only shown as a draft:
Eaton, B., Gregory, J., Drach, B., Taylor, K., Hankin, S. et al. (2024). NetCDF Climate and Forecast (CF)
Metadata Conventions (1.13-draft). CF Community. https://doi.org/10.5281/zenodo.FFFFFF

https://doi.org/10.5281/zenodo.FFFFFF
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/
https://cfconventions.org/
https://doi.org/10.5281/zenodo.FFFFFF

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

Table of Contents

About the authors
Abstract
1. Introduction
1.1. Goals
1.2. Principles for design
1.3. Terminology
1.4. Overview
1.5. Relationship to the COARDS Conventions
1.6. UGRID Conventions
2. NetCDF Files and Components
2.1. Filename
2.2. Data Types
2.3. Naming Conventions
2.4. Dimensions
2.5. Variables
2.5.1. Missing data, valid and actual range of data
2.6. Attributes
2.6.1. Identification of Conventions
2.6.2. Description of file contents
2.6.3. External Variables
2.7. Groups
2.7.1. Scope
2.7.2. Application of attributes
3. Description of the Data
3.1. Units
3.1.1. Dimensionless units
3.1.2. Temperature units
3.1.3. Scale factors and offsets
3.2. Long Name
3.3. Standard Name
3.4. Ancillary Data
3.5. Flags
4. Coordinate Types
4.1. Latitude Coordinate
4.2. Longitude Coordinate
4.3. Vertical (Height or Depth) Coordinate
4.3.1. Dimensional Vertical Coordinate
4.3.2. Dimensionless Vertical Coordinate

See https://cfconventions.org for further information

© 00 o0 00 J !

12
14
15
16
16
16
17
17
18
18
19
19
20
21
21
21
22
24
24
24
25
27
27
27
29
31
34
34
35
36
36
37

iii

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

4.3.3. Parametric Vertical Coordinate 37
4.4. Time Coordinate 38
4.4.1. Time Coordinate Units 38
4.4.2. Calendar 40
4.4.3. Leap Seconds 42
4.4.4. Time Coordinates with no Annual Cycle 47
4.4.5. Explicitly Defined Calendar 47
4.5. Discrete Axis 48
5. Coordinate Systems and Domain 49
5.1. Independent Latitude, Longitude, Vertical, and Time Axes 50
5.2. Two-Dimensional Latitude, Longitude, Coordinate Variables 51
5.3. Reduced Horizontal Grid 52
5.4. Timeseries of Station Data 53
5.5. Trajectories 53
5.6. Horizontal Coordinate Reference Systems, Grid Mappings, and Projections 53
5.6.1. Use of the CRS Well-known Text Format 58
5.7. Scalar Coordinate Variables 63
5.8. Domain Variables 64
5.9. Mesh Topology Variables 70
6. Labels and Alternative Coordinates 72
6.1. Labels 72
6.1.1. Geographic Regions 72
6.1.2. Taxon Names and Identifiers 73
6.2. Alternative Coordinates 74
7. Data Representative of Cells 75
7.1. Cell Boundaries 75
7.1.1. Bounds for one-dimensional coordinate variables 76
7.1.2. Bounds for horizontal coordinate variables with four-sided cells 77
7.1.3. Bounds for coordinate variables with p-sided cells in two spatial dimensions 79
7.1.4. Boundaries and Formula Terms 79
7.2. Cell Measures 80
7.3. Cell Methods 82
7.3.1. Statistics for more than one axis 84
7.3.2. Recording the spacing of the original data and other information 84
7.3.3. Statistics applying to portions of cells 86
7.3.4. Cell methods when there are no coordinates 87
7.4. Climatological Statistics 88
7.5. Geometries 93
8. Reduction of Dataset Size 99
8.1. Packed Data 99
8.2. Lossless Compression by Gathering 100

iv See https://cfconventions.org for further information

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

8.3. Lossy Compression by Coordinate Subsampling
8.3.1. Tie Points and Interpolation Subareas
8.3.2. Coordinate Interpolation Attribute
8.3.3. Interpolation Variable
8.3.4. Subsampled, Interpolated and Non-Interpolated Dimensions
8.3.5. Tie Point Mapping Attribute
8.3.6. Tie Point Dimension Mapping
8.3.7. Tie Point Index Mapping
8.3.8. Interpolation Parameters
8.3.9. Interpolation of Cell Boundaries
8.3.10. Interpolation Method Implementation
8.4. Lossy Compression via Quantization
8.4.1. Quantization variables
8.4.2. Per-variable quantization attributes
8.4.3. Description of quantization algorithms
9. Discrete Sampling Geometries
9.1. Features and feature types
9.2. Collections, instances and elements
9.3. Representations of collections of features in data variables
9.3.1. Orthogonal multidimensional array representation
9.3.2. Incomplete multidimensional array representation
9.3.3. Contiguous ragged array representation
9.3.4. Indexed ragged array representation
9.4. The featureType attribute
9.5. Coordinates and metadata
9.6. Missing Data
Appendix A: Attributes
Appendix B: Standard Name Table Format
Appendix C: Standard Name Modifiers
Appendix D: Parametric Vertical Coordinates
Atmosphere natural log pressure coordinate
Atmosphere sigma coordinate
Atmosphere hybrid sigma pressure coordinate
Atmosphere hybrid height coordinate
Atmosphere smooth level vertical (SLEVE) coordinate
Ocean sigma coordinate
Ocean s-coordinate
Ocean s-coordinate, generic form 1
Ocean s-coordinate, generic form 2
Ocean sigma over z coordinate

Ocean double sigma coordinate

See https://cfconventions.org for further information

101
102
103
103
104
105
105
105
108
112
115
116
117
117
119
120
120
121
122
123
124
124
125
126
126
127
128
134
137
138
138
139
139
140
140
141
141
142
143
143
144

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

Appendix E: Cell Methods 146
Appendix F: Grid Mappings 148
Albers Equal Area 148
Azimuthal equidistant 149
Geostationary projection 149
Lambert azimuthal equal area 150
Lambert conformal 151
Lambert Cylindrical Equal Area 151
Latitude-Longitude 152
Mercator 152
Oblique Mercator 153
Orthographic 153
Polar stereographic 154
Rotated pole 154
Sinusoidal 154
Stereographic 155
Transverse Mercator 155
Vertical perspective 156
Appendix G: Revision History 162
Appendix H: Annotated Examples of Discrete Geometries 163
H.1. Point Data 163
H.2. Time Series Data 164
H.2.1. Orthogonal multidimensional array representation of time series 164
H.2.2. Incomplete multidimensional array representation of time series 165
H.2.3. Single time series, including deviations from a nominal fixed spatial location 166
H.2.4. Contiguous ragged array representation of time series 169
H.2.5. Indexed ragged array representation of time series 170
H.3. Profile Data 172
H.3.1. Orthogonal multidimensional array representation of profiles 172
H.3.2. Incomplete multidimensional array representation of profiles 173
H.3.3. Single profile 174
H.3.4. Contiguous ragged array representation of profiles 175
H.3.5. Indexed ragged array representation of profiles 176
H.4. Trajectory Data 178
H.4.1. Multidimensional array representation of trajectories 178
H.4.2. Single trajectory 180
H.4.3. Contiguous ragged array representation of trajectories 181
H.4.4. Indexed ragged array representation of trajectories 182
H.5. Time Series of Profiles 183
H.5.1. Multidimensional array representations of time series profiles 184
H.5.2. Time series of profiles at a single station 186

vi See https://cfconventions.org for further information

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

H.5.3. Ragged array representation of time series profiles
H.6. Trajectory of Profiles
H.6.1. Multidimensional array representation of trajectory profiles
H.6.2. Profiles along a single trajectory
H.6.3. Ragged array representation of trajectory profiles
Appendix I: The CF data model
Introduction
Design criteria of the CF data model
Elements of CF-netCDF
The CF data model
Field construct
Domain construct
Domain axis construct and the data array
Coordinates: dimension coordinate and auxiliary constructs
Coordinate reference construct
Domain ancillary construct
Cell measure construct
Domain topology construct
Cell connectivity construct
Field ancillary constructs
Cell method construct
Appendix J: Coordinate Interpolation Methods
Common Definitions and Notation
Common Conversions and Formulas
Interpolation Methods
Linear Interpolation
Bilinear Interpolation
Quadratic Interpolation
Quadratic Interpolation of Geographic Coordinates Latitude and Longitude
Biquadratic Interpolation of Geographic Coordinates Latitude and Longitude
Coordinate Compression Steps
Coordinate Uncompression Steps
Appendix K: Mesh Topologies
Revision History
Version 1.13-draft
Version 1.12 (04 December 2024)
Version 1.11 (05 December 2023)
Version 1.10 (31 August 2022)
Version 1.9 (10 September 2021)
Version 1.8 (11 February 2020)
Version 1.7 (7 August 2017)

See https://cfconventions.org for further information

188
190
190
192
193
196
196
196
197
198
200
200
201
201
204
205
206
207
208
209
209
211
211
213
214
214
215
215
216
220
223
226
229
231
231
231
232
233
233
234
235

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

Version 1.6 (5 December 2011) 237
Version 1.5 (25 October 2010) 237
Version 1.4 (27 February 2009) 237
Version 1.3 (4 May 2008) 237
Version 1.2 (4 May 2008) 238
Version 1.1 (17 January 2008) 238
Version 1.0 (28 October 2003) 238
Bibliography 239
References 239

viii See https://cfconventions.org for further information

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

List of Tables

3.1. Prefixes for decimal multiples and submultiples of units

3.2. Flag Variable Bits (from Example)

3.3. Flag Variable Bit 2 and Bit 3 (from Example)

7.1. Dimensionality, description, and additional required attributes for geometry_types.

9.1. Logical structure and mandatory coordinates for discrete sampling geometry featureTypes

9.2. The storage of a data variable using the orthogonal multidimensional array representation
(subscripts in CDL order)

9.3. The storage of data using the incomplete multidimensional array representation (subscripts in
CDL order)

9.4. The storage of data using the contiguous ragged representation (subscripts in CDL order)

9.5. The storage of data using the indexed ragged representation (subscripts in CDL order)

A.l1. Attributes

C.1. Standard Name Modifiers

D.1. Consistent sets of wvalues for the standard names of formula terms and the
computed_standard_name

E.1. Cell Methods

F.1. Grid Mapping Attributes

I.1. The elements of the CF-netCDF conventions

I.2. The constructs of the CF data model

J.1. Conversions and formulas used in the definitions of subsampling interpolation methods

K.2. Mesh topology attributes

List of Figures

4.1. Figure 4.1
7.1. Figure 7.1
7.2. Figure 7.2
8.1. Figure 8.1
8.2. Figure 8.2
8.3. Figure 8.3
8.4. Figure 8.4
I.1. Figure .1
I.2. Figure 1.2
1.3. Figure 1.3
1.4. Figure 1.4
I.5. Figure .5
J.1. Figure J.1
J.2. Figure].2
]J.3. Figure J.3
]J.4. Figure].4
J.5. Figure J.5

List of Examples

2.1. String Variable Representations
3.1. Use of units_metadata to distinguish temperature quantities
3.2. Use of standard_name

See https://cfconventions.org for further information 1

https://cfconventions.org

3.3.
3.4.
3.5.
3.6.
3.7.
3.8.
4.1.
4.2.
4.3.
4.4,
4.5.
4.6.
4.7.
5.1.
5.2.
5.3.
5.6.
5.7.
5.8.
5.9.

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

Ancillary instrument data

Ancillary quality flag data

A flag variable, using flag_values

A flag variable, using flag_masks

A region variable, using flag_values

A flag variable, using flag_masks and flag_values
Latitude axis

Longitude axis

Atmosphere sigma coordinate

Example of a time coordinate variable

Use of units_metadata and calendar to define the treatment of leap seconds
Perpetual time axis

Paleoclimate time axis

Independent coordinate variables
Two-dimensional coordinate variables

Reduced horizontal grid

Rotated pole grid

"Lambert conformal projection”

Latitude and longitude on a spherical Earth
Latitude and longitude on the WGS 1984 datum

5.10. British National Grid

5.11
5.12.

. Latitude and longitude on the WGS 1984 datum + CRS WKT
British National Grid + Newlyn Datum in CRS WKT format

5.13. British National Grid + Newlyn Datum + referenced WGS84 Geodetic in CRS WKT format
5.14. "Multiple forecasts from a single analysis"

5.15.

A domain with independent coordinate variables.

5.16. A domain with a rotated pole grid and a scalar coordinate variable.

5.17. A domain containing cell areas for a spherical geodesic grid.

5.18. A domain with no explicit dimensions.

5.19. A domain containing a timeseries geometry.

5.20. A domain containing a timeseries of station data in the indexed ragged array representation.

5.21.

6.1.

A two-dimensional UGRID mesh topology variable
Northward heat transport in Atlantic Ocean

6.1.2. Taxon names and identifiers

6.2.
7.1.
7.2.
7.3.
7.4.
7.5.
7.6.
7.7.

sea.

7.8.
7.9.

Model level numbers

Cells on a time axis

Cells in a non-latitude-longitude horizontal grid

Specifying formula_terms when a parametric coordinate variable has bounds.

Cell areas for a spherical geodesic grid

Methods applied to a timeseries

Surface air temperature variance

Mean surface temperature over land and sensible heat flux averaged separately over land and

Thickness of sea-ice and snow on sea-ice averaged over sea area.
Climatological seasons

7.10. Decadal averages for January
7.11. Temperature for each hour of the average day
7.12. Extreme statistics and spell-lengths

See https://cfconventions.org for further information

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

7.13. Temperature for each hour of the typical climatological day

7.14. Monthly-maximum daily precipitation totals

7.15. Timeseries with geometry.

7.16. Polygons with holes

8.1. Horizontal compression of a three-dimensional array

8.2. Compression of a three-dimensional field

8.3. Two-dimensional tie point interpolation

8.4. One-dimensional tie point interpolation of two-dimensional domain.

8.5. Multiple interpolation variables with interpolation parameter attributes.

8.6. Combining a grid mapping and coordinate interpolation, with time as a non-interpolated
dimension.

8.7. Interpolation of the 2D cell boundaries corresponding to Figure 8.4

8.8. Quantization performed by BitRound algorithm in libnetcdf

8.9. Quantization performed by Granular BitRound algorithm in NCO

B.1. A name table containing three entries

H.1. "Point data"

H.2. Timeseries with common element times in a time coordinate variable using the orthogonal
multidimensional array representation.

H.3. Timeseries of station data in the incomplete multidimensional array representation.

H.4. A single timeseries.

H.5. A single timeseries with time-varying deviations from a nominal point spatial location

H.6. Timeseries of station data in the contiguous ragged array representation.

H.7. Timeseries of station data in the indexed ragged array representation.

H.8. "Atmospheric sounding profiles for a common set of vertical coordinates stored in the
orthogonal multidimensional array representation.”

H.9. Data from a single atmospheric sounding profile.

H.10. Atmospheric sounding profiles for a common set of vertical coordinates stored in the
contiguous ragged array representation.

H.11. Atmospheric sounding profiles for a common set of vertical coordinates stored in the indexed
ragged array representation.

H.12. Trajectories recording atmospheric composition in the incomplete multidimensional array
representation.

H.13. A single trajectory recording atmospheric composition.

H.14. Trajectories recording atmospheric composition in the contiguous ragged array
representation.

H.15. Trajectories recording atmospheric composition in the indexed ragged array representation.
H.16. Time series of atmospheric sounding profiles from a set of locations stored in a
multidimensional array representation.

H.17. Time series of atmospheric sounding profiles from a set of locations stored in an orthogonal
multidimensional array representation.

H.18. Time series of atmospheric sounding profiles from a single location stored in a
multidimensional array representation.

H.19. Time series of atmospheric sounding profiles from a set of locations stored in a ragged array
representation.

H.20. Time series of atmospheric sounding profiles along a set of trajectories stored in a
multidimensional array representation.

H.21. Time series of atmospheric sounding profiles along a trajectory stored in a multidimensional
array representation.

See https://cfconventions.org for further information 3

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

H.22. Time series of atmospheric sounding profiles along a set of trajectories stored in a ragged
array representation.
L.1. A single CF-netCDF variable corresponding to two data model constructs.

4 See https://cfconventions.org for further information

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

About the authors

Original Authors
e Brian Eaton, NCAR

* Jonathan Gregory, University of Reading and UK Met Office Hadley Centre
* Bob Drach, PCMDI, LLNL

* Karl Taylor, PCMDI, LLNL

e Steve Hankin, PMEL, NOAA

Additional Authors
* John Caron, UCAR

* Rich Signell, USGS

* Phil Bentley, UK Met Office Hadley Centre

* Greg Rappa, MIT

* Heinke Hock, DKRZ

e Alison Pamment, BADC

* Martin Juckes, BADC

* Martin Raspaud, SMHI

* Randy Horne, Excalibur Laboratories, Inc., Melbourne Beach Florida USA
* Jon Blower, University of Reading

» Timothy Whiteaker, University of Texas

* David Blodgett, USGS

* Charlie Zender, University of California, Irvine
e Daniel Lee, EUMETSAT

» David Hassell, NCAS and University of Reading
» Alan D. Snow, Corteva Agriscience

* Tobias Kolling, MPIM

* Dave Allured, CIRES/University of Colorado/NOAA/PSL
* Aleksandar Jelenak, HDF Group

e Anders Meier Soerensen, EUMETSAT

e Lucile Gaultier, OceanDatalLab

 Sylvain Herlédan, OceanDataLab

e Fernando Manzano, Puertos del Estado

* Lars Barring, SMHI

* Christopher Barker, NOAA

+ Sadie Bartholomew, NCAS and University of Reading

See https://cfconventions.org for further information

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

* Thomas Lavergne, MET Norway

Many others have contributed to the development of CF through their participation in discussions
about proposed changes.

6 See https://cfconventions.org for further information

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

Abstract

This document describes the CF conventions for climate and forecast metadata designed to promote
the processing and sharing of files created with the netCDF Application Programmer Interface
[NetCDF]. The conventions define metadata that provide a definitive description of what the data in
each variable represents, and of the spatial and temporal properties of the data. This enables users
of data from different sources to decide which quantities are comparable, and facilitates building
applications with powerful extraction, regridding, and display capabilities.

The CF conventions generalize and extend the COARDS conventions [COARDS]. The extensions
include metadata that provides a precise definition of each variable via specification of a standard
name, describes the vertical locations corresponding to dimensionless vertical coordinate values,
and provides the spatial coordinates of non-rectilinear gridded data. Since climate and forecast
data are often not simply representative of points in space/time, other extensions provide for the
description of coordinate intervals, multidimensional cells and climatological time coordinates, and
indicate how a data value is representative of an interval or cell. This standard also relaxes the
COARDS constraints on dimension order and specifies methods for reducing the size of datasets.

See https://cfconventions.org for further information 7

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

Chapter 1. Introduction

1.1. Goals

The NetCDF library [NetCDF] is designed to read and write data that has been structured according
to well-defined rules and is easily ported across various computer platforms. The netCDF interface
enables but does not require the creation of self-describing datasets. The purpose of the CF
conventions is to require conforming datasets to contain sufficient metadata that they are self-
describing in the sense that each variable in the file has an associated description of what it
represents, including physical units if appropriate, and that each value can be located in space
(relative to earth-based coordinates) and time.

An important benefit of a convention is that it enables software tools to display data and perform
operations on specified subsets of the data with minimal user intervention. It is possible to provide
the metadata describing how a field is located in time and space in many different ways that a
human would immediately recognize as equivalent. The purpose in restricting how the metadata is
represented is to make it practical to write software that allows a machine to parse that metadata
and to automatically associate each data value with its location in time and space. It is equally
important that the metadata be easy for human users to write and to understand.

This standard is intended for use with climate and forecast data, for atmosphere, surface and
ocean, and was designed with model-generated data particularly in mind. We recognise that there
are limits to what a standard can practically cover; we restrict ourselves to issues that we believe to
be of common and frequent concern in the design of climate and forecast metadata. Our main
purpose therefore, is to propose a clear, adequate and flexible definition of the metadata needed
for climate and forecast data. Although this is specifically a netCDF standard, we feel that most of
the ideas are of wider application. The metadata objects could be contained in file formats other
than netCDF. Conversion of the metadata between files of different formats will be facilitated if
conventions for all formats are based on similar ideas.

This convention is designed to be backward compatible with the COARDS conventions [COARDS], by
which we mean that a conforming COARDS dataset also conforms to the CF standard. Thus new
applications that implement the CF conventions will be able to process COARDS datasets.

We have also striven to maximize conformance to the COARDS standard, that is, wherever the
COARDS metadata conventions provide an adequate description we require their use. Extensions to
COARDS are implemented in a manner such that the content that doesn’t depend on the extensions
is still accessible to applications that adhere to the COARDS standard.

1.2. Principles for design

The following principles are followed in the design of these conventions:

1. CF-netCDF metadata is designed to make datasets self-describing as far as practically possible. A
self-describing dataset is one which can be interpreted without need for reference to resources
outside itself, and the CF principle is to minimise that need. Therefore CF-netCDF does not use
codes, but instead relies on controlled vocabularies containing terms that are chosen to be self-

8 See https://cfconventions.org for further information

https://cfconventions.org

10.

1.

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

explanatory (but more detailed definitions of them are provided in CF documents).

The conventions are changed only as actually required by common use-cases, and not for needs
which cannot be anticipated with certainty.

In order to keep them logical, consistent in approach and as simple as possible, the netCDF
conventions are devised with and within the conceptual framework of the CF data model, and
new standard names are constructed as far as possible to follow the syntax and vocabulary of
existing standard names.

The conventions should be practicable for both producers and users of data.
The metadata should be both easily readable by humans and easily parsable by programs.

To avoid potential inconsistency within the metadata, the conventions should minimise
redundancy.

The conventions should minimise the possibility for mistakes by data-writers and data-readers.

Conventions are provided to allow data-producers to describe the data they wish to produce,
rather than attempting to prescribe what data they should produce; consequently most CF
conventions are optional.

Because many datasets remain in use for a long time after production, it is desirable that
metadata written according to previous versions of the convention should also be compliant
with and have the same interpretation under later versions.

Because all previous versions must generally continue to be supported in software for the sake
of archived datasets, and in order to limit the complexity of the conventions, there is a strong
preference against introducing any new capability to the conventions when there is already
some method that can adequately serve the same purpose (even if a different method would
arguably be better than the existing one).

3. Terminology

The terms in this document that refer to components of a netCDF file are defined in the NetCDF
User’s Guide (NUG) [NUG]. Some of those definitions are repeated below for convenience.

ancestor group

A group from which the referring group is descended via direct parent-child relationships

auxiliary coordinate variable

Any netCDF variable that contains coordinate data, but is not a coordinate variable (in the sense
of that term defined by the [NUG] and used by this standard - see below). Unlike coordinate
variables, there is no relationship between the name of an auxiliary coordinate variable and the
name(s) of its dimension(s).

boundary variable

A boundary variable is associated with a variable that contains coordinate data. When a data
value provides information about conditions in a cell occupying a region of space/time or some
other dimension, the boundary variable provides a description of cell extent.

See https://cfconventions.org for further information 9

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

CDL syntax

The ascii format used to describe the contents of a netCDF file is called CDL (network Common
Data form Language). This format represents arrays using the indexing conventions of the C
programming language, i.e., index values start at 0, and in multidimensional arrays, when
indexing over the elements of the array, it is the last declared dimension that is the fastest
varying in terms of file storage order. The netCDF utilities ncdump and ncgen use this format
(see NUG section on CDL syntax). All examples in this document use CDL syntax.

cell

A region in one or more dimensions whose boundary can be described by a set of vertices
recorded in boundary variables. The term interval is sometimes used for one-dimensional cells.
A two-dimensional cell is analogous to a pixel in a raster graphic, but is a more general concept
(see Section 1.4, "Overview").

calendar

A CF calendar defines an ordered set of valid datetimes with integer seconds.

coordinate variable

A coordinate variable is a one-dimensional variable with the same name as its dimension e.g.,
time(time). In CF, a coordinate variable must be of a numeric data type (note that NUG section
on coordinate variables does not have this requirement). The coordinate values must be in strict
monotonic order (all values are different, and they are arranged in either consistently
increasing or consistently decreasing order). Missing values are not allowed in coordinate
variables. To avoid confusion with coordinate variables, CF does not permit a one-dimensional
string-valued variable to have the same name as its dimension.

datetime

The set of numbers which together identify an instant of time, namely its year, month, day, hour,
minute and second, where the second may have a fraction but the others are all integer.

grid mapping variable
A variable used as a container for attributes that define a specific grid mapping. The type of the
variable is arbitrary since it contains no data.

interpolation variable

A variable used as a container for attributes that define a specific interpolation method for
uncompressing tie point variables. The type of the variable is arbitrary since it contains no data.

latitude dimension

A dimension of a netCDF variable that has an associated latitude coordinate variable.

local apex group

The nearest (to a referring group) ancestor group in which a dimension of an out-of-group
coordinate is defined. The word "apex" refers to position of this group at the vertex of the tree of
groups formed by it, the referring group, and the group where a coordinate is located.

longitude dimension

A dimension of a netCDF variable that has an associated longitude coordinate variable.

10 See https://cfconventions.org for further information

https://docs.unidata.ucar.edu/nug/current/_c_d_l.html
https://docs.unidata.ucar.edu/nug/current/best_practices.html#bp_Coordinate-Systems
https://docs.unidata.ucar.edu/nug/current/best_practices.html#bp_Coordinate-Systems
https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

most rapidly varying dimension
The dimension of a multidimensional variable for which elements are adjacent in storage. When
a netCDF dataset is represented in CDL, the most rapidly varying dimension is the last one e.g. x
in float data(z,y,x). C and Python NumPy use the same order as CDL, also called "row-major
order"”, while Fortran and R use the alternative order, also called "column-major order", so that
when netCDF variables are accessed in Fortran or R the most rapidly varying dimension is the
first one.

multidimensional coordinate variable

An auxiliary coordinate variable that is multidimensional.

nearest item

The item (variable or group) that can be reached via the shortest traversal of the file from the
referring group following the rules set forth in the Section 2.7, "Groups".

out-of-group reference

A reference to a variable or dimension that is not contained in the referring group.

path

Paths must follow the UNIX style path convention and may begin with either a '/, "..", or a word.

quantization variable

A variable used as a container for attributes that define a specific quantization algorithm. The
type of the variable is arbitrary since it contains no data.

recommendation

Recommendations in this convention are meant to provide advice that may be helpful for
reducing common mistakes. In some cases we have recommended rather than required
particular attributes in order to maintain backwards compatibility with COARDS. An application
must not depend on a dataset’s adherence to recommendations.

referring group

The group in which a reference to a variable or dimension occurs.

scalar coordinate variable

A scalar variable (i.e. one with no dimensions) that contains coordinate data. Depending on
context, it may be functionally equivalent either to a size-one coordinate variable (Section 5.7,
"Scalar Coordinate Variables”) or to a size-one auxiliary coordinate variable (Section 6.1,
"Labels" and Section 9.2, "Collections, instances, and elements").

sibling group

Any group with the same parent group as the referring group

spatiotemporal dimension

A dimension of a netCDF variable that is used to identify a location in time and/or space.

tie point variable

A netCDF variable that contains coordinates that have been compressed by sampling. There is no

See https://cfconventions.org for further information 11

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

relationship between the name of a tie point variable and the name(s) of its dimension(s).

time dimension

A dimension of a netCDF variable that has an associated time coordinate variable.

vertex dimension

The dimension of a boundary variable along which the vertices of each cell are ordered.

vertical dimension

A dimension of a netCDF variable that has an associated vertical coordinate variable.

1.4. Overview

No variable or dimension names are standardized by this convention. Instead we follow the lead of
the [NUG] and standardize only the names of attributes and some of the values taken by those
attributes. Variable or dimension names can either be a single variable name or a path to a
variable. The overview provided in this section will be followed with more complete descriptions in
following sections. Appendix A, Attributes contains a summary of all the attributes used in this
convention.

Files using this version of the CF Conventions must set the [NUG] defined attribute Conventions to
contain the string value "CF-1.13-draft" to identify datasets that conform to these conventions.

The general description of a file’s contents should be contained in the following attributes: title,
history, institution, source, comment and references (Section 2.6.2, "Description of file contents"). For
backwards compatibility with COARDS none of these attributes is required, but their use is
recommended to provide human readable documentation of the file contents.

Each variable in a netCDF file has an associated description which is provided by the attributes
units, long_name, and standard_name. The units, and long_name attributes are defined in the [NUG]
and the standard_name attribute is defined in this document.

The units attribute is required for all variables that represent dimensional quantities (except for
boundary variables defined in Section 7.1, "Cell Boundaries"). The values of the units attributes are
character strings that are recognized by UNIDATA’s UDUNITS package [UDUNITS] (with exceptions
allowed as discussed in Section 3.1, "Units").

The 1long_name and standard_name attributes are used to describe the content of each variable. For
backwards compatibility with COARDS neither is required, but use of at least one of them is
strongly recommended. The use of standard names will facilitate the exchange of climate and
forecast data by providing unambiguous identification of variables most commonly analyzed.

Four types of coordinates receive special treatment by these conventions: latitude, longitude,
vertical, and time. Every variable must have associated metadata that allows identification of each
such coordinate that is relevant. Two independent parts of the convention allow this to be done.
There are conventions that identify the variables that contain the coordinate data, and there are
conventions that identify the type of coordinate represented by that data.

There are two methods used to identify variables that contain coordinate data. The first is to use the

12 See https://cfconventions.org for further information

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

[NUG]-defined "coordinate variables." The use of coordinate variables is required for all dimensions
that correspond to one dimensional space or time coordinates. In cases where coordinate variables
are not applicable, the variables containing coordinate data are identified by the coordinates
attribute.

Once the variables containing coordinate data are identified, further conventions are required to
determine the type of coordinate represented by each of these variables. Latitude, longitude, and
time coordinates are identified solely by the value of their units attribute. Vertical coordinates with
units of pressure may also be identified by the units attribute. Other vertical coordinates must use
the attribute positive which determines whether the direction of increasing coordinate value is up
or down. Because identification of a coordinate type by its units involves the use of an external
package [UDUNITS], we provide the optional attribute axis for a direct identification of coordinates
that correspond to latitude, longitude, vertical, or time axes.

Latitude, longitude, and time are defined by internationally recognized standards, and hence,
identifying the coordinates of these types is sufficient to locate data values uniquely with respect to
time and a point on the earth’s surface. On the other hand identifying the vertical coordinate is not
necessarily sufficient to locate a data value vertically with respect to the earth’s surface. In
particular a model may output data on the parametric (usually dimensionless) vertical coordinate
used in its mathematical formulation. To achieve the goal of being able to spatially locate all data
values, this convention provides a mapping, via the standard_name and formula_terms attributes of a
parametric vertical coordinate variable, between its values and dimensional vertical coordinate
values that can be uniquely located with respect to a point on the earth’s surface (Section 4.3.3,
"Parametric Vertical Coordinate"; Appendix D, Parametric Vertical Coordinates).

It is often the case that data values are not representative of single points in time, space and other
dimensions, but rather of intervals or multidimensional cells. CF defines a bounds attribute to
specify the extent of intervals or cells. Because both the [NUG] and [COARDS] define coordinate
variables but not cells or bounds, many applications assume that gridpoints are always located at
the centers of their cells. This assumption does not hold in CF. If bounds are not provided, the
location of the gridpoint within the cell is undefined, and nothing can be assumed about the
location and extent of the cell.

A two-dimensional cell is analogous to a pixel in a raster graphic, but is a more general concept.
Pixels in a raster are evenly spaced in each dimension and arranged in a logically rectangular
array. Two-dimensional cells in a CF field do not necessarily satisfy either of those conditions,
though they commonly do. Furthermore, as an alternative to cells in two dimensions, CF defines a
convention for the case where each data value is associated with a geographical feature that is
described by one or more points, lines or polygons.

When data that is representative of cells can be described by simple statistical methods (for
instance, mean or maximum), those methods can be indicated using the cell_methods attribute. An
important application of this attribute is to describe climatological and diurnal statistics.

Methods for reducing the total volume of data include both packing and compression. Packing
reduces the data volume by reducing the precision of the stored numbers. It is implemented using
the attributes add_offset and scale_factor which are defined in the [NUG]. Compression on the
other hand loses no precision, but reduces the volume by not storing missing data. The attribute
compress is defined for this purpose.

See https://cfconventions.org for further information 13

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

1.5. Relationship to the COARDS Conventions

These conventions generalize and extend the COARDS conventions [COARDS]. A major design goal
has been to maintain backward compatibility with COARDS. Hence applications written to process
datasets that conform to these conventions will also be able to process COARDS conforming
datasets. We have also striven to maximize conformance to the COARDS standard so that datasets
that only require the metadata that was available under COARDS will still be able to be processed
by COARDS conforming applications. But because of the extensions that provide new metadata
content, and the relaxation of some COARDS requirements, datasets that conform to these
conventions will not necessarily be recognized by applications that adhere to the COARDS
conventions. The features of these conventions that allow writing netCDF files that are not COARDS
conforming are summarized below.

COARDS standardizes the description of grids composed of independent latitude, longitude,
vertical, and time axes. In addition to standardizing the metadata required to identify each of these
axis types, COARDS requires (time, vertical, latitude, longitude) as the CDL order for the dimensions
of a variable, with longitude being the most rapidly varying dimension (the last dimension in CDL
order). Because of I/O performance considerations it may not be possible for models to output their
data in conformance with the COARDS requirement. The CF convention places no rigid restrictions
on the order of dimensions, however we encourage data producers to make the extra effort to stay
within the COARDS standard order. The use of non-COARDS axis ordering will render files
inaccessible to some applications and limit interoperability. Often a buffering operation can be
used to miminize performance penalties when axis ordering in model code does not match the axis
ordering of a COARDS file.

COARDS addresses the issue of identifying dimensionless vertical coordinates, but does not provide
any mechanism for mapping the dimensionless values to dimensional ones that can be located with
respect to the earth’s surface. For backwards compatibility we continue to allow (but do not

non

require) the units attribute of dimensionless vertical coordinates to take the values "level", "layer",
or "sigma_level." But we recommend that the standard_name and formula_terms attributes be used to
identify the appropriate definition of the dimensionless vertical coordinate (see Section 4.3.3,
"Parametric Vertical Coordinate").

The CF conventions define attributes which enable the description of data properties that are
outside the scope of the COARDS conventions. These new attributes do not violate the COARDS
conventions, but applications that only recognize COARDS conforming datasets will not have the
capabilities that the new attributes are meant to enable. Briefly the new attributes allow:

* Identification of quantities using standard names.

* Description of dimensionless vertical coordinates.

* Associating dimensions with auxiliary coordinate variables.

» Linking data variables to scalar coordinate variables.

» Associating dimensions with labels.

* Description of intervals and cells.

* Description of properties of data defined on intervals and cells.

* Description of climatological statistics.

14 See https://cfconventions.org for further information

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

* Data compression for variables with missing values.

1.6. UGRID Conventions

These conventions implicitly incorporate parts of the UGRID conventions for storing unstructured
(or flexible mesh) data in netCDF files using mesh topologies [UGRID]. Only version 1.0 of the
UGRID conventions is allowed. The UGRID conventions description is referenced from, rather than
rewritten into, this document and the canonical description of how to store mesh topologies is only
to be found at [UGRID]. A summary indicating how UGRID relates to other parts of the CF
conventions, and which features of UGRID are excluded from CF, can be found in Section 5.9, "Mesh
Topology Variables". To reduce the chance of ambiguities arising from their accidental re-use, all of
the UGRID standardized attributes are specified in Appendix K, Mesh Topology Attributes and
Appendix A, Attributes.

The UGRID conventions have their own conformance document, which should be used in
conjunction with the CF conformance document when checking the validity of datasets.

See https://cfconventions.org for further information 15

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

Chapter 2. NetCDF Files and Components

The components of a netCDF file are described in section 2 of the [NUG]. In this section we describe
conventions associated with filenames and the basic components of a netCDF file. We also
introduce new attributes for describing the contents of a file.

2.1. Filename

NetCDF files should have the file name extension ".nc".

2.2. Data Types

Data variables must be one of the following data types: string, char, byte, unsigned byte, short,
unsigned short, int, unsigned int, int64, unsigned int64, float or real, and double (which are all the
netCDF external data types supported by netCDF-4). The string type, which has variable length, is
only available in files using the netCDF version 4 (netCDF-4) format. The char and string types are
not intended for numeric data. One byte numeric data should be stored using the byte or unsigned
byte data types. It is possible to treat the byte and short types as unsigned by using the [NUG]
convention of indicating the unsigned range using the valid_min, valid_max, or valid_range
attributes. In many situations, any integer type may be used. When the phrase "integer type" is used
in this document, it should be understood to mean byte, unsigned byte, short, unsigned short, int,
unsigned int, int64, or unsigned int64.

A text string can be stored either in a variable-length string or in a fixed-length char array. In both
cases, text strings must be represented in Unicode Normalization Form C (NFC, section 3.11 and
Annex 15 of the Unicode standard) and encoded according to UTF-8. A text string consisting only of
ASCII characters is guaranteed to conform with this requirement, because the ASCII characters are
a subset of Unicode, and their NFC UTF-8 encodings are the same as their one-byte ASCII codes
(decimal 0-127, hexadecimal 00-7F).

Before version 1.12, CF did not require UTF-8 encoding, and did not provide or endorse any
convention to record what encoding was used. However, if the text string is stored in a char
variable, the encoding might be recorded by the _Encoding attribute, although this is not a CF or
NUG convention.

An n-dimensional array of strings may be implemented as a variable or an attribute of type string
with n dimensions (only n=1 is allowed for an attribute) or as a variable of type char with n+1
dimensions, where the most rapidly varying dimension (the last dimension in CDL order) is large
enough to contain the longest string in the variable. For example, a char variable containing the
names of the months would be dimensioned (12,9) in order to accommodate "September", the
month with the longest name. The other strings, such as "May", would be padded with trailing
NULL or space characters so that every array element is filled. A string variable to store the same
information would be dimensioned (12), with each element of the array containing a string of the
appropriate length. The CDL example below shows one variable of each type.

16 See https://cfconventions.org for further information

https://docs.unidata.ucar.edu/nug/current/md_types.html
https://www.unicode.org/versions/Unicode16.0.0/UnicodeStandard-16.0.pdf
https://unicode.org/reports/tr15
https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

Example 2.1. String Variable Representations

dimensions:
strings = 30 ;
strlen = 10 ;

variables:

char char_variable(strings,strlen) ;
char_variable:long_name = "strings of type char" ;
string str_variable(strings) ;
str_variable:long_name = "strings of type string" ;

The examples in this document that use string-valued variables alternate between these two forms.

2.3. Naming Conventions

It is recommended that variable, dimension, attribute and group names begin with a letter and be
composed of letters, digits, and underscores. By the word letters we mean the standard ASCII letters
uppercase A to Z and lowercase a to z. By the word digits we mean the standard ASCII digits 0 to 9,
and similarly underscores means the standard ASCII underscore _. Note that this is in conformance
with the COARDS conventions, but is more restrictive than the netCDF interface which allows
almost all Unicode characters encoded as multibyte UTF-8 characters (NUG Appendix B). The
netCDF interface also allows leading underscores in names, but the NUG states that this is reserved
for system use.

Case is significant in netCDF names, but it is recommended that names should not be distinguished
purely by case, i.e., if case is disregarded, no two names should be the same. It is also recommended
that names should be obviously meaningful, if possible, as this renders the file more effectively self-
describing.

This convention does not standardize any variable or dimension names. Attribute names and their
contents, where standardized, are given in English in this document and should appear in English
in conforming netCDF files for the sake of portability. Languages other than English are permitted
for variables, dimensions, and non-standardized attributes. The content of some standardized
attributes are string values that are not standardized, and thus are not required to be in English.
For example, a description of what a variable represents may be given in a non-English language
using the long_name attribute (see Section 3.2, "Long Name") whose contents are not standardized,
but a description given by the standard_name attribute (see Section 3.3, "Standard Name") must be
taken from the standard name table which is in English.

2.4. Dimensions

A variable may have any number of dimensions, including zero, and the dimensions must all have
different names. COARDS strongly recommends limiting the number of dimensions to four, but we
wish to allow greater flexibility. The dimensions of the variable define the axes of the quantity it
contains. Dimensions other than those of space and time may be included. Several examples can be
found in this document. Under certain circumstances, one may need more than one dimension in a

See https://cfconventions.org for further information 17

https://docs.unidata.ucar.edu/nug/current/file_format_specifications.html
https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

particular quantity. For instance, a variable containing a two-dimensional probability density
function might correlate the temperature at two different vertical levels, and hence would have
temperature on both axes.

If any or all of the dimensions of a variable have the interpretations of "date or time" (T), "height or
depth" (2), "latitude" (Y), or "longitude" (X) then we recommend, but do not require (see Section 1.5,
"Relationship to the COARDS Conventions"), those dimensions to appear in the relative order T, then
Z, then Y, then X in the CDL definition corresponding to the file. All other dimensions should,
whenever possible, be placed to the left of the spatiotemporal dimensions.

Dimensions may be of any size, including unity. When a single value of some coordinate applies to
all the values in a variable, the recommended means of attaching this information to the variable is
by use of a dimension of size unity with a one-element coordinate variable. It is also acceptable to
use a scalar coordinate variable which eliminates the need for an associated size one dimension in
the data variable. The advantage of using either a coordinate variable or an auxiliary coordinate
variable is that all its attributes can be used to describe the single-valued quantity, including
boundaries. For example, a variable containing data for temperature at 1.5 m above the ground has
a single-valued coordinate supplying a height of 1.5 m, and a time-mean quantity has a single-
valued time coordinate with an associated boundary variable to record the start and end of the
averaging period.

2.5. Variables

This convention does not standardize variable names.

NetCDF variables that contain coordinate data are referred to as coordinate variables, auxiliary
coordinate variables, scalar coordinate variables, or multidimensional coordinate variables.

2.5.1. Missing data, valid and actual range of data

NUG Appendix A, Attribute Conventions provide the _FillValue, missing_value, valid_min, valid_max,
and valid_range attributes to indicate missing data. Missing data is allowed in data variables and
auxiliary coordinate variables. Generic applications should treat the data as missing where any
auxiliary coordinate variables have missing values; special-purpose applications might be able to
make use of the data. Missing data is not allowed in coordinate variables.

The NUG conventions for missing data changed significantly between version 2.3 and version 2.4.
Since version 2.4 the NUG defines missing data as all values outside of the valid_range, and specifies
how the valid_range should be defined from the _FillValue (which has library specified default
values) if it hasn’t been explicitly specified. If only one missing value is needed for a variable then
we recommend that this value be specified using the _FillValue attribute. Doing this guarantees
that the missing value will be recognized by generic applications that follow either the before or
after version 2.4 conventions.

The scalar attribute with the name _FillValue and of the same type as its variable is recognized by
the netCDF library as the value used to pre-fill disk space allocated to the variable. This value is
considered to be a special value that indicates undefined or missing data, and is returned when
reading values that were not written. The _FillValue should be outside the range specified by
valid_range (if used) for a variable. The netCDF library defines a default fill value for each data type

18 See https://cfconventions.org for further information

https://www.unidata.ucar.edu/software/netcdf/docs/attribute_conventions.html
https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

(See the "Note on fill values" in NUG Appendix B, File Format Specifications).

The missing values of a variable with scale_factor and/or add_offset attributes (see Section 8.1,
"Packed Data") are interpreted relative to the variable’s external values (a.k.a. the packed values,
the raw values, the values stored in the netCDF file), not the values that result after the scale and
offset are applied. Applications that process variables that have attributes to indicate both a
transformation (via a scale and/or offset) and missing values should first check that a data value is
valid, and then apply the transformation. Note that values that are identified as missing should not
be transformed. Since the missing value is outside the valid range it is possible that applying a
transformation to it could result in an invalid operation. For example, the default _FillValue is very
close to the maximum representable value of IEEE single precision floats, and multiplying it by 100
produces an "Infinity" (using single precision arithmetic).

This convention defines a two-element vector attribute actual_range for variables containing
numeric data. If the variable is packed using the scale_factor and add_offset attributes (see Section
8.1, "Packed Data"), the elements of the actual_range should have the type intended for the
unpacked data. The elements of actual_range must be exactly equal to the minimum and the
maximum data values which occur in the variable (wWhen unpacked if packing is used), and both
must be within the valid_range if specified. If the data is all missing or invalid, the actual_range
attribute cannot be used.

2.6. Attributes

This standard describes many attributes (some mandatory, others optional), but a file may also
contain non-standard attributes. Such attributes do not represent a violation of this standard.
Application programs should ignore attributes that they do not recognise or which are irrelevant
for their purposes. Conventional attribute names should be used wherever applicable. Non-
standard names should be as meaningful as possible. Before introducing an attribute, consideration
should be given to whether the information would be better represented as a variable. In general, if
a proposed attribute requires ancillary data to describe it, is multidimensional, requires any of the
defined netCDF dimensions to index its values, or requires a significant amount of storage, a
variable should be used instead. When this standard defines string attributes that may take various
prescribed values, the possible values are generally given in lower case. However, applications
programs should not be sensitive to case in these attributes. Several string attributes are defined by
this standard to contain "blank-separated lists". Consecutive words in such a list are separated by
one or more adjacent spaces. The list may begin and end with any number of spaces. See Appendix
A, Attributes for a list of attributes described by this standard.

2.6.1. Identification of Conventions

Files that follow this version of the CF Conventions must indicate this by setting the [NUG] defined
global attribute Conventions to a string value that contains "CF-1.13-draft". The Conventions version
number contained in that string can be used to find the web based versions of this document are
from the netCDF Conventions web page. Subsequent versions of the CF Conventions will not make
invalid a compliant usage of this or earlier versions of the CF terms and forms.

It is possible for a netCDF file to adhere to more than one set of conventions, even when there is no
inheritance relationship among the conventions. In this case, the value of the Conventions attribute

See https://cfconventions.org for further information 19

https://www.unidata.ucar.edu/software/netcdf/docs/file_format_specifications.html#classic_format_spec
https://cfconventions.org/
https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

may be a single text string containing a list of the convention names separated by blank space
(recommended) or commas (if a convention name contains blanks). This is the Unidata
recommended syntax from NetCDF Users Guide, Appendix A. If the string contains any commas, it
is assumed to be a comma-separated list.

When CF is listed with other conventions, this asserts the same full compliance with CF
requirements and interpretations as if CF was the sole convention. It is the responsibility of the
data-writer to ensure that all common metadata is used with consistent meaning between
conventions.

The UGRID conventions, which are fully incorporated into the CF conventions, do not need to be
included in the Conventions attribute.

2.6.2. Description of file contents

The following attributes are intended to provide information about where the data came from and
what has been done to it. This information is mainly for the benefit of human readers. The attribute
values are all character strings. For readability in ncdump outputs it is recommended to embed
newline characters into long strings to break them into lines. For backwards compatibility with
COARDS none of these global attributes is required.

The [NUG] defines title and history to be global attributes. We wish to allow the newly defined
attributes, i.e., institution, source, references, and comment, to be either global or assigned to
individual variables. When an attribute appears both globally and as a variable attribute, the
variable’s version has precedence.

title

A succinct description of what is in the dataset.

institution

Specifies where the original data was produced.

source

The method of production of the original data. If it was model-generated, source should name
the model and its version, as specifically as could be useful. If it is observational, source should
characterize it (e.g., "surface observation" or "radiosonde").

history

Provides an audit trail for modifications to the original data. Well-behaved generic netCDF filters
will automatically append their name and the parameters with which they were invoked to the
global history attribute of an input netCDF file. We recommend that each line begin by
indicating the date and time of day that the program was executed.

references

Published or web-based references that describe the data or methods used to produce it.

comment

Miscellaneous information about the data or methods used to produce it.

20 See https://cfconventions.org for further information

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

2.6.3. External Variables

The global external_variables attribute is a blank-separated list of the names of variables which are
named by attributes in the file but which are not present in the file. These variables are to be found
in other files (called "external files") but CF does not provide conventions for identifying the files
concerned. The only attribute for which CF standardises the use of external variables is
cell_measures.

2.7. Groups

Groups provide a powerful mechanism to structure data hierarchically. This convention does not
standardize group names. It may be of benefit to name groups in such a way that human readers
can interpret them. However, files that conform to this standard shall not require software to
interpret or decode information from group names. References to out-of-group variable and
dimensions shall be found by applying the scoping rules outlined below.

2.7.1. Scope
The scoping mechanism is in keeping with the following principle:
"Dimensions are scoped such that they are visible to all child groups. For

example, you can define a dimension in the root group, and use its
dimension id when defining a variable in a sub-group.”

— The NetCDF Data Model: Groups

Any variable or dimension can be referred to, as long as it can be found with one of the following
search strategies:

» Search by absolute path
 Search by relative path

» Search by proximity
These strategies are explained in detail in the following sections.

If any dimension of an out-of-group variable has the same name as a dimension of the referring
variable, the two must be the same dimension (i.e. they must have the same netCDF dimension ID).

Search by absolute path

A variable or dimension specified with an absolute path (i.e., with a leading slash "/") is at the
indicated location relative to the root group, as in a UNIX-style file convention. For example, a
coordinates attribute of /g1/1at refers to the 1at variable in group /g1.

Search by relative path

As in a UNIX-style file convention, a variable or dimension specified with a relative path (i.e.,
containing a slash but not with a leading slash, e.g. child/1at) is at the location obtained by affixing

See https://cfconventions.org for further information 21

https://www.unidata.ucar.edu/software/netcdf/docs/groups.html
https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

the relative path to the absolute path of the referring attribute. For example, a coordinates attribute
of g1/1at refers to the lat variable in subgroup g1 of the current (referring) group. Upward path
traversals from the current group are indicated with the UNIX convention. For example, ../g1/1at
refers to the lat variable in the sibling group g1 of the current (referring) group.

Search by proximity

A variable or dimension specified with no path (for example, lat) refers to the variable or
dimension of that name, if there is one, in the referring group. If not, the ancestors of the referring
group are searched for it, starting from the direct ancestor and proceeding toward the root group,
until it is found.

A special case exists for coordinate variables. Because coordinate variables must share dimensions
with the variables that reference them, the ancestor search is executed only until the local apex
group is reached. For coordinate variables that are not found in the referring group or its ancestors,
a further strategy is provided, called lateral search. The lateral search proceeds downwards from
the local apex group width-wise through each level of groups until the sought coordinate is found.
The lateral search algorithm may only be used for [NUG] coordinate variables; it shall not be used
for auxiliary coordinate variables.

This use of the lateral search strategy to find them is discouraged. They are allowed
NOTE mainly for backwards-compatibility with existing datasets, and may be deprecated
in future versions of the standard.

2.7.2. Application of attributes

The following attributes are optional for non-root groups. They are allowed in order to provide
additional provenance and description of the subsidiary data. They do not override attributes from
parent groups.

o title

* history
If these attributes are present, they may be applied additively to the parent attributes of the same
name. If a file containing groups is modified, the user or application need only update these
attributes in the root group, rather than traversing all groups and updating all attributes that are

found with the same name. In the case of conflicts, the root group attribute takes precedence over
per-group instances of these attributes.

The following attributes may only be used in the root group and shall not be duplicated or
overridden in child groups:

e Conventions

e external_variables

Furthermore, per-variable attributes must be attached to the variables to which they refer. They
may not be attached to a group, even if all variables within that group use the same attribute and
value.

22 See https://cfconventions.org for further information

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

If attributes are present within groups without being attached to a variable, these attributes apply
to the group where they are defined, and to that group’s descendants, but not to ancestor or sibling
groups. If a group attribute is defined in a parent group, and one of the child group redefines the
same attribute, the definition within the child group applies for the child and all of its descendants.

See https://cfconventions.org for further information 23

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

Chapter 3. Description of the Data

The attributes described in this section are used to provide a description of the content and the
units of measurement for each variable. We continue to support the use of the units and long_name
attributes as defined in COARDS. We extend COARDS by adding the optional standard_name attribute
which is used to provide unique identifiers for variables. This is important for data exchange since
one cannot necessarily identify a particular variable based on the name assigned to it by the
institution that provided the data.

The standard_name attribute can be used to identify variables that contain coordinate data. But since
it is an optional attribute, applications that implement these standards must continue to be able to
identify coordinate types based on the COARDS conventions.

3.1. Units

The units attribute is required for all variables that represent dimensional quantities (except for
boundary variables defined in Section 7.1, "Cell Boundaries" and climatology boundary variables
defined in Section 7.4, "Climatological Statistics"). The units attribute is permitted but not required
for dimensionless quantities (see Section 3.1.1, "Dimensionless units").

The value of the units attribute is a string that can be recognized by the UDUNITS package
[UDUNITS], with the exceptions that are given in Section 3.1.1, "Dimensionless units" and Section
3.1.3, "Scale factors and offsets". Note that case is significant in the units strings. Note also that CF
depends on UDUNITS only for the definition of legal units strings. CF does not assume or require
that the UDUNITS software will be used for units conversion. In most units conversions, the sole
operation on the data is multiplication by a scale factor. Special treatment is required in converting
the units of variables that involve temperature (Section 3.1.2, "Temperature units") and the units of
time coordinate variables (Section 4.4, "Time Coordinate").

The COARDS convention prohibits the unit degrees altogether, but this unit is not forbidden by the
CF convention because it may in fact be appropriate for a variable containing, say, solar zenith
angle. The unit degrees is also allowed on coordinate variables such as the latitude and longitude
coordinates of a transformed grid. In this case the coordinate values are not true latitudes and
longitudes, which must always be identified using the more specific forms of degrees as described
in Section 4.1, "Latitude Coordinate" and Section 4.2, "Longitude Coordinate".

3.1.1. Dimensionless units

A variable with no units attribute is assumed to be dimensionless. However, a units attribute
specifying a dimensionless unit may optionally be included. The canonical unit (see also Section 3.3,
"Standard Name") for dimensionless quantities that represent fractions, or parts of a whole, is 1.
The UDUNITS package defines a few dimensionless units, such as percent, ppm (parts per million, 1e-
6), and ppb (parts per billion, 1e-9). As an alternative to the canonical units of 1 or some other
unitless number, the units for a dimensionless quantity may be given as a ratio of dimensional
units, for instance mg kg-1 for a mass ratio of 1e-6, or microlitre litre-1 for a volume ratio of 1e-6.
Data-producers are invited to consider whether this alternative would be more helpful to the users
of their data.

24 See https://cfconventions.org for further information

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

The CF convention supports dimensionless units that are UDUNITS compatible, with one exception,
concerning the dimensionless units defined by UDUNITS for volume ratios, such as ppmv and ppbv.
These units are allowed in the units attribute by CF only if the data variable has no standard_name.
These units are prohibited by CF if there is a standard_name, because the standard_name defines
whether the quantity is a volume ratio, so the units are needed only to indicate a dimensionless
number.

Information describing a dimensionless physical quantity itself (e.g. "area fraction" or "probability")
does not belong in the units attribute, but should be given in the long_name or standard_name
attributes (see Section 3.2, "Long Name" and Section 3.3, "Standard Name"), in the same way as for
physical quantities with dimensional units. As an exception, to maintain backwards compatibility
with COARDS, the text strings level, layer, and sigma_level are allowed in the units attribute, in
order to indicate dimensionless vertical coordinates. This use of units is not compatible with
UDUNITS, and is deprecated by this standard because conventions for more precisely identifying
dimensionless vertical coordinates are available (see Section 4.3.2, "Dimensionless Vertical
Coordinate").

The UDUNITS syntax that allows scale factors and offsets to be applied to a unit is not supported by
this standard, except for case of specifying reference time, see section Section 4.4, "Time
Coordinate". The application of any scale factors or offsets to data should be indicated by the
scale_factor and add_offset attributes. Use of these attributes for data packing, which is their most
important application, is discussed in detail in Section 8.1, "Packed Data".

3.1.2. Temperature units

The units of temperature imply an origin (i.e. zero point) for the associated measurement scale.
When the temperature value is the degree of warmth with respect to the origin of the measurement
scale, we call it an on-scale temperature. When units of on-scale temperature are converted, the
data may require the addition of an offset as well as multiplication by a scale factor, because the
physical meaning of a numerical value of zero for an on-scale temperature depends on the unit of
measurement. On-scale temperature is unique among quantities in the respect that the origin and
the unit of measurement are both defined by the units and therefore cannot be chosen
independently. For all other quantities, the origin and the unit of measurement are independent.
Converting the unit of measurement alone, without changing the origin, does not change the
meaning of zero. For example (using bold to indicate a numerical data value), 0 kilogram is the
same mass as 0 pound, and 0 seconds since 1970-1-1 means the same as 0 days since 1970-1-1, but 0
degC is not the same temperature as 0 degF (= -17.8 deg(), because these two temperature units
implicitly refer to measurement scales which have different origins.

On the other hand, when the temperature value is a temperature difference, which compares two
on-scale temperatures with the same origin, the value of that origin is irrelevant as it cancels out
when taking the difference. Therefore to convert the units of a temperature difference requires
only multiplication by a scale factor, without the addition of an offset.

The units attribute does not distinguish between on-scale temperatures and temperature
differences. This ambiguity also affects units of temperature raised to some power e.g. K'2 or
multiplied by other units e.g. W m-2 K-1, degF/foot or degC m s-1. A standard_name (Section 3.3,
"Standard Name") or standard_name modifier (Appendix C, Standard Name Modifiers) may clarify
the intention, but they are optional. Some statistical operations described by the cell_methods

See https://cfconventions.org for further information 25

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

attribute (Section 7.3, "Cell Methods"; Appendix E, Cell Methods) imply that temperature must be
interpreted as temperature difference, but this attribute is optional too.

In order to convert the units correctly, it is essential to know whether a temperature is on-scale or a
difference. Therefore this standard strongly recommends that any variable whose units involve a
temperature unit should also have a units_metadata attribute to make the distinction. This attribute
must have one of the following three values: temperature: on_scale, temperature: difference,
temperature: unknown. The units_metadata attribute, standard_name modifier (Appendix C, Standard
Name Modifiers) and cell_methods attribute (Appendix E, Cell Methods) must be consistent if
present. A variable must not have a units_metadata attribute if it has no units attribute or if its units
do not involve a temperature unit.

Example 3.1. Use of units_metadata to distinguish temperature quantities

variables:
float Tonscale;
Tonscale:1long_name="global-mean surface temperature";
Tonscale:standard_name="surface_temperature";
Tonscale:units="degC";
Tonscale:units_metadata="temperature: on_scale";
Tonscale:cell_methods="area: mean";
float Tdifference;
Tdifference:long_name="change in global-mean surface temperature relative to
pre-industrial”;
Tdifference:standard_name="surface_temperature";
Tdifference:units="degC";
Tdifference:units_metadata="temperature: difference";
Tdifference:cell_methods="area: mean";

With temperature: unknown, correct conversion of the units cannot be guaranteed. This value of
units_metadata indicates that the data-writer does not know whether the temperature is on-scale or
a difference. If the units_metadata attribute is not present, the data-reader should assume
temperature: unknown. The units_metadata attribute was introduced in CF 1.11. In data written
according to versions before 1.11, temperature: unknown should be assumed for all units involving
temperature, if it cannot be deduced from other metadata. We note (for guidance only regarding
temperature: unknown, not as a CF convention) that the UDUNITS software assumes temperature:
on_scale for units strings containing only a unit of temperature, and temperature: difference for
units strings in which a unit of temperature is raised to any power other than unity, or multiplied
or divided by any other unit.

With temperature: on_scale, correct conversion can be guaranteed only for pure temperature units.
If the quantity is an on-scale temperature multiplied by some other quantity, it is not possible to
convert the data from the units given to any other units that involve a temperature with a different
origin, given only the units. For instance, when temperature is on-scale, a value in kg degree_C m-2
can be converted to a value in kg K m-2 only if we know separately the values in degree_C and kg m-
2 of which it is the product.

26 See https://cfconventions.org for further information

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

3.1.3. Scale factors and offsets

UDUNITS recognises the SI prefixes shown in Prefixes for decimal multiples and submultiples of
units for decimal multiples and submultiples of units, and allows them to be applied to non-SI units
as well. UDUNITS offers a syntax for indicating arbitrary scale factors and offsets to be applied to a
unit. (Note that this is different from the scale factors and offsets used for converting between
units, as discussed for temperature in Section 3.1.2, "Temperature units".) This UDUNITS syntax for
arbitrary transformation of units is not supported by the CF standard, except for the case of
specifying reference time (Section 4.4, "Time Coordinate"). The application of any scale factors or
offsets to data should be indicated by the scale_factor and add_offset attributes. Use of these
attributes for data packing, which is their most important application, is discussed in detail in
Section 8.1, "Packed Data".

Table 3.1. Prefixes for decimal multiples and submultiples of units

Factor Prefix Abbreviatio Factor Prefix Abbreviatio
n n
lel deca,deka da le-1 deci d
le2 hecto h le-2 centi c
1le3 kilo k le-3 milli m
le6 mega M le-6 micro u
1e9 giga G 1le-9 nano n
lel2 tera T le-12 pico P
lel5 peta P le-15 femto
1e18 exa E le-18 atto a
le21 zetta Z le-21 zepto z
le24 yotta Y le-24 yocto y

3.2. Long Name

The long_name attribute is defined by the [NUG] to contain a long descriptive name which may, for
example, be used for labeling plots. For backwards compatibility with COARDS this attribute is
optional. But it is highly recommended that either this or the standard_name attribute defined in the
next section be provided for all data variables and variables containing coordinate data, in order to
make the file self-describing. If a variable has no long_name attribute then an application may use, as
a default, the standard_name if it exists, or the variable name itself.

3.3. Standard Name

A fundamental requirement for exchange of scientific data is the ability to describe precisely the
physical quantities being represented. To some extent this is the role of the long_name attribute as
defined in the [NUG]. However, usage of long_name is completely ad-hoc. For many applications it is
desirable to have a more definitive description of the quantity, which allows users of data from
different sources (some of which might be models and others observational) to determine whether

See https://cfconventions.org for further information 27

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

quantities are in fact comparable. For this reason each variable may optionally be given a
"standard name", whose meaning is defined by this convention. There may be several variables in a
dataset with any given standard name, and these may be distinguished by other metadata, such as
coordinates (Chapter 4, Coordinate Types) and cell_methods (Section 7.3, "Cell Methods").

A standard name is associated with a variable via the attribute standard_name which takes a string
value comprised of a standard name optionally followed by one or more blanks and a standard
name modifier (a string value from Appendix C, Standard Name Modifiers).

The set of permissible standard names is contained in the standard name table. The table entry for
each standard name contains the following:

standard name

The name used to identify the physical quantity. A standard name contains no whitespace and is
case sensitive.

canonical units

Representative units of the physical quantity. Unless it is dimensionless, a variable with a
standard_name attribute must have units which are physically equivalent (not necessarily
identical) to the canonical units, possibly modified by an operation specified by the standard
name modifier (see below and Appendix C, Standard Name Modifiers) or by the cell_methods
attribute (see Section 7.3, "Cell Methods" and Appendix E, Cell Methods) or both.

Units of time coordinates (Section 4.4, "Time Coordinate"), whose units attribute includes the
word since, are not physically equivalent to time units that do not include since in the units. To
mark this distinction, the canonical unit given for quantities used for time coordinates is s since
1958-1-1. The reference datetime in the canonical unit (the beginning of the day i.e. midnight on
1st January 1958 at 0 degrees_east) is not restrictive; the time coordinate variable’s own units
may contain any reference datetime (after since) that is valid in its calendar. (We use 1958-1-1
because it is the beginning of International Atomic Time, and a valid datetime in all CF
calendars; see also Section 4.4.3, "Leap Seconds".) In both kinds of time units attribute (with or
without since), any unit for measuring time can be used i.e. any unit which is physically
equivalent to the SI base unit of time, namely the second.

description

The description is meant to clarify the qualifiers of the fundamental quantities such as which
surface a quantity is defined on or what the flux sign conventions are. We don’t attempt to
provide precise definitions of fundumental physical quantities (e.g., temperature) which may be
found in the literature. The description may define rules on the variable type, attributes and
coordinates which must be complied with by any variable carrying that standard name (such as
in Example 3.5).

The standard name table is located at https://cfconventions.org/Data/cf-standard-names/current/src/
cf-standard-name-table.xml, written in compliance with the XML format, as described in Appendix
B, Standard Name Table Format. Knowledge of the XML format is only necessary for application
writers who plan to directly access the table. A formatted text version of the table is provided at
https://cfconventions.org/Data/cf-standard-names/current/build/cf-standard-name-table.html, and
this table may be consulted in order to find the standard name that should be assigned to a

28 See https://cfconventions.org for further information

https://cfconventions.org/Data/cf-standard-names/current/src/cf-standard-name-table.xml
https://cfconventions.org/Data/cf-standard-names/current/src/cf-standard-name-table.xml
https://cfconventions.org/Data/cf-standard-names/current/build/cf-standard-name-table.html
https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

variable. Some standard names (e.g. region, Section 6.1.1, "Geographic Regions", and area_type,
Statistics applying to portions of cells) are used to indicate quantities which are permitted to take
only certain standard values. This is indicated in the definition of the quantity in the standard
name table, accompanied by a list or a link to a list of the permitted values.

Standard names by themselves are not always sufficient to describe a quantity. For example, a
variable may contain data to which spatial or temporal operations have been applied. Or the data
may represent an uncertainty in the measurement of a quantity. These quantity attributes are
expressed as modifiers of the standard name. Modifications due to common statistical operations
are expressed via the cell_methods attribute (see Section 7.3, "Cell Methods" and Appendix E, Cell
Methods). Other types of quantity modifiers are expressed using the optional modifier part of the
standard_name attribute. The permissible values of these modifiers are given in Appendix C,
Standard Name Modifiers.

Example 3.2. Use of standard_name

float psl(1at,lon) ;
psl:long_name = "mean sea level pressure" ;
psl:units = "hPa" ;
psl:standard_name = "air_pressure_at_sea_level" ;

The description in the standard name table entry for air_pressure_at_sea_level clarifies that
"sea level" refers to the mean sea level, which is close to the geoid in sea areas.

3.4. Ancillary Data

When one data variable provides metadata about the individual values of another data variable it
may be desirable to express this association by providing a link between the variables. For
example, instrument data may have associated measures of uncertainty. The attribute
ancillary_variables is used to express these types of relationships. It is a string attribute whose
value is a blank separated list of variable names. The nature of the relationship between variables
associated via ancillary_variables must be determined by other attributes. The variables listed by
the ancillary_variables attribute will often have the standard name of the variable which points to
them including a modifier (Appendix C, Standard Name Modifiers) to indicate the relationship. The
dimensions of an ancillary variable must be the same as or a subset of the dimensions of the
variable to which it is related, but their order is not restricted, and with one exception: If an
ancillary variable of a data variable that has been compressed by gathering (Section 8.2, "Lossless
Compression by Gathering") does not span the compressed dimension, then its dimensions may be
any subset of the data variable’s uncompressed dimensions, i.e. any of the dimensions of the data
variable except the compressed dimension, and any of the dimensions listed by the compress
attribute of the compressed coordinate variable.

Example 3.3. Ancillary instrument data

float q(time) ;
q:standard_name = "specific_humidity" ;

See https://cfconventions.org for further information 29

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

q:units = "g/q9" ;
q:ancillary_variables = "q_error_limit q_detection_limit" ;

float g_error_Llimit(time)
g_error_limit:standard_name = "specific_humidity standard_error" ;
g_error_limit:units = "g/q" ;

float q_detection_Limit(time)
q_detection_limit:standard_name = "specific_humidity detection_minimum" ;
q_detection_limit:units = "g/q" ;

Alternatively, ancillary_variables may be used as status flags indicating the operational status of
an instrument producing the data or as quality flags indicating the results of a quality control test,
or some other quantitative quality assessment, performed against the measurements contained in
the source variable. In these cases, the flag variable will include a standard name that differs from
that of the source variable and indicates the specific type of flag the variable represents.

The standard names table includes many names intended to be used in this situation, both general
names meant to be used to flexibly represent any type of status or quality assessment, as well as
names for specific quality control tests commonly applied to geophysical phenomena timeseries
data. Several examples are listed below:

Sample flag variable standard names:

» status_flag and quality_flag: general flag categories for instrument status or quality
assessment

» climatology_test_quality_flag, flat_line_test_quality_flag, gap_test_quality_flag,
spike_test_quality_flag: a subset of standard name flags used to indicate the results of
commonly-used geophysical timeseries data quality control tests (consult the standard names
table for a full list of published flags)

* aggregate_quality_flag: flag indicating an aggregate summary of all quality tests performed on
the data variable, both automated and manual (i.e. a master quality flag for a particular
variable)

The following example illustrates the use of three of these flags to represent two independent
quality control tests and an aggregate flag that combines the results of the two tests.

Example 3.4. Ancillary quality flag data

float salinity(time, z);
salinity:units = "1";
salinity:long_name = "Salinity";
salinity:standard_name = "sea_water_practical_salinity";
salinity:ancillary_variables = "salinity_qc_generic
salinity_qc_flat_line_test salinity_qc_agq";

int salinity_qc_generic(time, z);

salinity_qc_generic:long_name = "Salinity Generic QC Process Flag";
salinity_qc_generic:standard_name = "quality_flag";

30 See https://cfconventions.org for further information

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

int salinity_qc_flat_line_test(time, z);
salinity_qc_flat_line_test:long_name = "Salinity Flat Line Test Flag";
salinity_qc_flat_line_test:standard_name = "flat_line_test_quality_flag";

int salinity_qc_agg(time, z);
salinity_qc_agg:long_name = "Salinity Aggregate Flag";
salinity_qc_agg:standard_name = "aggregate_quality_flag";

Note that the ancillary variables in this example are simplified to exclude flag_values,
flag_masks and flag_meanings attributes described in Section 3.5, "Flags" that they would
ordinarily require

3.5. Flags

The attributes flag_values, flag_masks and flag_meanings are intended to make variables that
contain flag values self describing. Status codes and Boolean (binary) condition flags may be
expressed with different combinations of flag_values and flag_masks attribute definitions.

The flag_values and flag_meanings attributes describe a status flag consisting of mutually exclusive
coded values. The flag_values attribute is the same type as the variable to which it is attached, and
contains a list of the possible flag values. The flag_meanings attribute is a string whose value is a
blank separated list of descriptive words or phrases, one for each flag value. Each word or phrase
should consist of characters from the alphanumeric set and the following five: '_', -, ", '+', '@". If
multi-word phrases are used to describe the flag values, then the words within a phrase should be
connected with underscores. The following example illustrates the use of flag values to express a
speed quality with an enumerated status code.

Example 3.5. A flag variable, using flag_values

byte current_speed_qc(time, depth, lat, lon) ;
current_speed_qc:long_name = "Current Speed Quality" ;
current_speed_qc:standard_name = "status_flag" ;
current_speed_qc:_FillValue = -128b ;
current_speed_qc:valid_range = @b, 2b ;
current_speed_qc:flag_values = @b, 1b, 2b ;
current_speed_qc:flag_meanings = "quality_good sensor_nonfunctional

outside_valid_range" ;

Note that the data variable containing current speed has an ancillary_variables attribute with
a value containing current_speed_dc.

The flag_masks and flag_meanings attributes describe a number of independent Boolean conditions
using bit field notation by setting unique bits in each flag_masks value. The flag_masks attribute is
the same type as the variable to which it is attached, and contains a list of values matching unique
bit fields. The flag_meanings attribute is defined as above, one for each flag masks value. A flagged
condition is identified by performing a bitwise AND of the variable value and each flag_masks

See https://cfconventions.org for further information 31

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

value; a non-zero result indicates a true condition. Thus, any or all of the flagged conditions may be
true, depending on the variable bit settings. The following example illustrates the use of flag_masks
to express six sensor status conditions.

Example 3.6. A flag variable, using flag_masks

byte sensor_status_qc(time, depth, lat, lon) ;
sensor_status_qc:long_name = "Sensor Status" ;
sensor_status_qc:standard_name = "status_flag" ;
sensor_status_qc:_FillValue = @b ;
sensor_status_qc:valid_range = 1b, 63b ;
sensor_status_qc:flag_masks = 1b, 2b, 4b, 8b, 16b, 32b ;
sensor_status_qc:flag_meanings = "low_battery processor_fault
memory_fault disk_fault
software_fault
maintenance_required" ;

A variable with standard name of region, area_type or any other standard name which requires
string-valued values from a defined list may use flags together with flag_values and flag_meanings
attributes to record the translation to the string values. The following example illustrates this using
integer flag values for a variable with standard name region and flag_values selected from the
standardized region names (see section 6.1.1).

Example 3.7. A region variable, using flag_values

int basin(lat, lon);
standard_name: region;
flag_values: 1, 2, 3;
flag_meanings:"atlantic_arctic_ocean indo_pacific_ocean global_ocean";
data:
basin: 1, 1, 1, 1, 2, g

The flag_masks, flag_values and flag_meanings attributes, used together, describe a blend of
independent Boolean conditions and enumerated status codes. The flag_masks and flag_values
attributes are both the same type as the variable to which they are attached. A flagged condition is
identified by a bitwise AND of the variable value and each flag_masks value; a result that matches
the flag_values value indicates a true condition. Repeated flag_masks define a bit field mask that
identifies a number of status conditions with different flag_values. The flag_meanings attribute is
defined as above, one for each flag_masks bit field and flag_values definition. Each flag_values and
flag_masks value must coincide with a flag_meanings value. The following example illustrates the
use of flag_masks and flag_values to express two sensor status conditions and one enumerated
status code.

32 See https://cfconventions.org for further information

https://cfconventions.org/Data/cf-standard-names/docs/standardized-region-names.html
https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

Example 3.8. A flag variable, using flag_masks and flag_values

byte sensor_status_qc(time, depth, lat, lon) ;

sensor_status_qc:long_name = "Sensor Status" ;
sensor_status_qc:standard_name = "status_flag" ;
sensor_status_qc:_FillValue = @b ;
sensor_status_qc:valid_range = 1b, 15b ;
sensor_status_qc:flag_masks = 1b, 2b, 12b, 12b, 12b ;
sensor_status_qc:flag_values = 1b, 2b, 4b, 8b, 12b ;
sensor_status_qc:flag_meanings =

"low_battery

hardware_fault

offline_mode calibration_mode maintenance_mode" ;

In this case, mutually exclusive values are blended with Boolean values to maximize use of the
available bits in a flag value. The table below represents the four binary digits (bits) expressed by
the sensor_status_qc variable in the previous example.

Bit 0 and Bit 1 are Boolean values indicating a low battery condition and a hardware fault,
respectively. The next two bits (Bit 2 and Bit 3) express an enumeration indicating abnormal sensor
operating modes. Thus, if Bit 0 is set, the battery is low and if Bit 1 is set, there is a hardware fault -
independent of the current sensor operating mode.

Table 3.2. Flag Variable Bits (from Example)
Bit 3 (MSB) Bit 2 Bit 1 Bit 0 (LSB)
H/W Fault Low Batt

The remaining bits (Bit 2 and Bit 3) are decoded as follows:

Table 3.3. Flag Variable Bit 2 and Bit 3 (from Example)

Bit 3 Bit 2 Mode

0 1 offline_mode

1 0 calibration_mode

1 1 maintenance_mode

The "12b" flag mask is repeated in the sensor_status_qc flag_masks definition to explicitly declare
the recommended bit field masks to repeatedly AND with the variable value while searching for
matching enumerated values. An application determines if any of the conditions declared in the
flag_meanings list are true by simply iterating through each of the flag_masks and AND’ing them
with the variable. When a result is equal to the corresponding flag_values element, that condition
is true. The repeated flag_masks enable a simple mechanism for clients to detect all possible
conditions.

See https://cfconventions.org for further information 33

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

Chapter 4. Coordinate Types

The commonest use of coordinate variables is to locate the data in space and time, but coordinates
may be provided for any other continuous geophysical quantity (e.g. density, temperature, radiation
wavelength, zenith angle of radiance, sea surface wave frequency) or discrete category (see Section
4.5, "Discrete Axis", e.g. area type, model level number, ensemble member number) on which the
data variable depends.

Four types of coordinates receive special treatment by these conventions: latitude, longitude,
vertical, and time. We continue to support the special role that the units and positive attributes
play in the COARDS convention to identify coordinate type. As an extension to COARDS, we strongly
recommend that a parametric (usually dimensionless) vertical coordinate variable should be
associated, via standard_name and formula_terms attributes, with its explicit definition, which
provides a mapping between its values and dimensional vertical coordinate values that can be
uniquely located with respect to a point on the earth’s surface.

Because identification of a coordinate type by its units is complicated by requiring the use of an
external package [UDUNITS], we provide two optional methods that yield a direct identification.
The attribute axis may be attached to a coordinate variable and given one of the values X, Y, Z or T
which stand for a longitude, latitude, vertical, or time axis respectively. Alternatively the
standard_name attribute may be used for direct identification. But note that these optional attributes
are in addition to the required COARDS metadata.

To identify generic spatial coordinates we recommend that the axis attribute be attached to these
coordinates and given one of the values X, Y or Z. The values X and Y for the axis attribute should be
used to identify horizontal coordinate variables. If both X- and Y-axis are identified, X-Y-up should
define a right-handed coordinate system, i.e. rotation from the positive X direction to the positive Y
direction is anticlockwise if viewed from above. We strongly recommend that coordinate variables
be used for all coordinate types whenever they are applicable.

The methods of identifying coordinate types described in this section apply both to coordinate
variables and to auxiliary coordinate variables named by the coordinates attribute (see Chapter 5,
Coordinate Systems and Domain).

The values of a coordinate variable or auxiliary coordinate variable indicate the locations of the
gridpoints. The locations of the boundaries between cells are indicated by bounds variables (see
Section 7.1, "Cell Boundaries").

4.1. Latitude Coordinate

Variables representing latitude must always explicitly include the units attribute; there is no
default value. The recommended value of the units attribute is the string degrees_north. Also
accepted are degree_north, degree_N, degrees_N, degreeN, and degreesN.

Example 4.1. Latitude axis

float lat(lat) ;
lat:long_name = "latitude" ;

34 See https://cfconventions.org for further information

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

lat:units = "degrees_north" ;
lat:standard_name = "latitude" ;

Application writers should note that the UDUNITS package does not recognize the directionality
implied by the "north" part of the unit specification. It only recognizes its size, i.e., 1 degree is
defined to be pi/180 radians. Hence, determination that a coordinate is a latitude type should be
done via a string match between the given unit and one of the acceptable forms of degrees_north.

Optionally, the latitude type may be indicated additionally by providing the standard_name attribute
with the value latitude, and/or the axis attribute with the value Y.

Coordinates of latitude with respect to a rotated pole should be given units of degrees, not
degrees_north or equivalents, because applications which use the units to identify axes would have
no means of distinguishing such an axis from real latitude, and might draw incorrect coastlines, for
instance.

4.2. Longitude Coordinate

Variables representing longitude must always explicitly include the units attribute; there is no
default value. The recommended value of the units attribute is the string degrees_east. Also
accepted are degree_east, degree_E, degrees_E, degreeE, and degreesE.

Example 4.2. Longitude axis

float lon(lon) ;
lon:long_name = "longitude" ;
lon:units = "degrees_east" ;
lon:standard_name = "longitude" ;

Application writers should note that the UDUNITS package has limited recognition of the
directionality implied by the "east" part of the unit specification. It defines degrees_east to be pi/180
radians, and hence equivalent to degrees_north. We recommend the determination that a
coordinate is a longitude type should be done via a string match between the given unit and one of
the acceptable forms of degrees_east.

Optionally, the longitude type may be indicated additionally by providing the standard_name
attribute with the value longitude, and/or the axis attribute with the value X.

Coordinates of longitude with respect to a rotated pole should be given units of degrees, not
degrees_east or equivalents, because applications which use the units to identify axes would have
no means of distinguishing such an axis from real longitude, and might draw incorrect coastlines,
for instance.

See https://cfconventions.org for further information 35

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

4.3. Vertical (Height or Depth) Coordinate

Variables representing dimensional height or depth axes must always explicitly include the units
attribute; there is no default value.

The direction of positive (i.e., the direction in which the coordinate values are increasing), whether
up or down, cannot in all cases be inferred from the units. The direction of positive is useful for
applications displaying the data. For this reason the attribute positive as defined in the COARDS
standard is required if the vertical axis units are not a valid unit of pressure (as determined by the
UDUNITS package [UDUNITS]) — otherwise its inclusion is optional. The positive attribute may
have the value up or down (case insensitive). This attribute may be applied to either coordinate
variables or auxiliary coordinate variables that contain vertical coordinate data.

For example, if an oceanographic netCDF file encodes the depth of the surface as 0 and the depth of
1000 meters as 1000 then the axis would use attributes as follows:

axis_name:units = "meters" ;
axis_name:positive = "down" ;

If, on the other hand, the depth of 1000 meters were represented as -1000 then the value of the
positive attribute would have been up. If the units attribute value is a valid pressure unit the
default value of the positive attribute is down.

A vertical coordinate will be identifiable by:

* units of pressure; or

* the presence of the positive attribute with a value of up or down (case insensitive).

Optionally, the vertical type may be indicated additionally by providing the standard_name attribute
with an appropriate value, and/or the axis attribute with the value Z. If both positive and
standard_name are provided, it is recommended that they should be consistent. For instance, if a
depth of 1000 metres is represented by -1000 and positive is up, it would be inconsistent to give the
standard_name as depth, whose definition (vertical distance below the surface) implies positive
down. If an application detects such an inconsistency, the user should be warned, and the positive
attribute should be used to determine the sign convention.

Recommendations: The positive attribute should be consistent with the sign convention implied by
the definition of the standard_name, if both are provided.

4.3.1. Dimensional Vertical Coordinate

Variables representing dimensional vertical coordinates for depth or height must always explicitly
include the units attribute. The acceptable units for a vertical (depth or height) coordinate variable
must a UDUNITS [UDUNITS] representation of one of the following:

* units of pressure. For vertical axes the most commonly used of these include bar, millibar,
decibar, atmosphere (atm), pascal (Pa), and hPa.

* units of length. For vertical axes the most commonly used of these include meter (metre, m), and

36 See https://cfconventions.org for further information

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

kilometer (km).

» other units that may under certain circumstances reference vertical position such as units of
density or temperature.

Plural forms are also acceptable.

4.3.2. Dimensionless Vertical Coordinate

The units attribute is not required for dimensionless coordinates. For backwards compatibility with
COARDS we continue to allow the units attribute to take one of the values: level, layer, or
sigma_level. These values are not recognized by the UDUNITS package, and are considered a
deprecated feature in the CF standard.

4.3.3. Parametric Vertical Coordinate

In some cases dimensional vertical coordinates are a function of horizontal location as well as
parameters which depend on vertical location, and therefore cannot be stored in the one-
dimensional vertical coordinate variable, which is in most of these cases is dimensionless. The
standard_name of the parametric (usually dimensionless) vertical coordinate variable can be used to
find the definition of the associated computed (always dimensional) vertical coordinate in
Appendix D, Parametric Vertical Coordinates. The definition provides a mapping between the
parametric vertical coordinate values and computed values that can positively and uniquely
indicate the location of the data. The formula_terms attribute can be used to associate terms in the
definitions with variables in a netCDF file, and the computed_standard_name attribute can be used to
supply the standard_name of the computed vertical coordinate values computed according to the
definition. To maintain backwards compatibility with COARDS the use of these attributes is not
required, but is strongly recommended. Some of the definitions may be supplemented with
information stored in the grid_mapping variable about the datum used as a vertical reference (e.g.
geoid, other geopotential datum or reference ellipsoid; see Section 5.6, "Horizontal Coordinate
Reference Systems, Grid Mappings, and Projections" and Appendix F, Grid Mappings).

Example 4.3. Atmosphere sigma coordinate

float lev(lev) ;
lev:long_name = "sigma at layer midpoints" ;
lev:positive = "down" ;
lev:standard_name = "atmosphere_sigma_coordinate" ;
lev:formula_terms = "sigma: lev ps: PS ptop: PTOP" ;
lev:computed_standard_name = "air_pressure" ;

In this example the standard_name value atmosphere_sigma_coordinate identifies the following
definition from Appendix D, Parametric Vertical Coordinates which specifies how to compute
pressure at gridpoint (n,k,j, i) where j and i are horizontal indices, k is a vertical index, and n is a
time index:

See https://cfconventions.org for further information 37

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

p(n,k,j,1) = ptop + sigma(k)*(ps(n,j,i)-ptop)

The formula_terms attribute associates the variable lev with the term sigma, the variable PS with the
term ps, and the variable PTOP with the term ptop. Thus the pressure at gridpoint (n,k,j,i) would be
calculated by

p(n,k,j,i) = PTOP + lev(k)*(PS(n,j,i)-PTOP)

The computed_standard_name attribute indicates that the values in variable p would have a
standard_name of air_pressure.

4.4. Time Coordinate

A time coordinate is a number which identifies an instant along the continuous physical dimension
of time, whether in reality or in a model. The instant can equivalently be identified by its datetime,
which is a set of numbers comprising year, month, day, hour, minute and second, where the second
may have a fraction but the others are all integer. The time coordinate and the datetime are
interconvertible given the calendar attribute of the time coordinate variable (Section 4.4.2,
"Calendar"”) and its units attribute (containing the time unit of the coordinate values and the
reference datetime, Section 4.4.1, "Time Coordinate Units").

Variables containing time coordinates must always explicitly include the units attribute, formatted
as described in Section 4.4.1, "Time Coordinate Units". There is no default value for the units. A
coordinate variable is identifiable as a time coordinate variable from its units alone. Optionally, a
time coordinate variable may be indicated additionally by providing the standard_name attribute
with an appropriate value, and/or the axis attribute with the value T.

Example 4.4. Example of a time coordinate variable

double time(time) ;
time:axis = "T"; // optional
time:standard_name = "time" ; // optional
time:units = "days since 1990-1-1 0:0:0" ; // mandatory

4.4.1. Time Coordinate Units

The units attribute of a time coordinate variable takes a string value that follows the formatting
requirements of the [UDUNITS] package (e.g. Example of a time coordinate variable). It must
comprise a unit of measure that is physically equivalent to the SI base unit of time (i.e. the second),
followed by the word since and a reference datetime. The format of the units string implies that the
time coordinate equals the length of the time interval from the instant identified by the reference
datetime to the instant identified by the time coordinate. This is exactly true in all cases except
when leap seconds occur between the two intervals in the standard, proleptic_gregorian, and julian
calendars. See Section 4.4.3, "Leap Seconds".

38 See https://cfconventions.org for further information

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

The acceptable units of measure for time are given by UDUNITS. The most commonly used of these
strings (and their abbreviations) are day (d), hour (hr, h), minute (min) and second (sec, s). Plural forms
are also acceptable.

UDUNITS defines a year to be exactly 365.242198781 days (the interval between 2 successive
passages of the sun through vernal equinox). It is not a calendar year. UDUNITS defines a month to
be exactly year/12, which is not a calendar month. The CF standard follows UDUNITS in the
definition of units, but we recommend that year and month should not be used, because of the
potential for mistakes and confusion.

UDUNITS defines a minute as 60 seconds, an hour as 3600 seconds and a day as 86400 seconds. These
are not calendar units. When a leap second is inserted into UTC, the minute, hour and day affected
differ by one second from their usual durations according to clock time, but the UDUNITS and CF
minute, hour and day do not; they are fixed units of measure. See also Section 4.4.3, "Leap Seconds".

UDUNITS permits a number of alternatives to the word since in the units of time coordinates. All
the alternatives have exactly the same meaning in UDUNITS. For compatibility with other software,
CF strongly recommends that since should be used.

The reference datetime string (appearing after the identifier since) is required. It must include the
date, which may optionally be followed by time or time zone offset or both. Its format is y-m-d [H:M
:S] [Z], where [...] indicates an optional element:

* y is year, m month, d day, H hour and M minute, which are all integers of one or more digits,
and y may be prefixed with a sign (but note that some CF calendars do not permit negative
years; see Section 4.4.2, "Calendar"),

* Sis second, which may be integer or floating point (see Section 4.4.3, "Leap Seconds" regarding
$>59),

» Z is the time zone offset. This is an interval of time, specified in one of the formats described
below. Only numbers (digits, +, - and :) or the letter "Z" are allowed in Z, not time zone names or
acronyms.

The default time zone offset is zero. In a time zone with zero offset, time (approximately) equals
mean solar time for 0 degrees_east of longitude. (Although this may be exact in a model, in reality
the time with zero time zone offset differs by some seconds from mean solar time; see the
discussion of UTC and leap seconds in Section 4.4.2, "Calendar".) If both time and time zone offset
are omitted the time is 00:00:00 (the beginning of the day i.e. midnight at O degrees_east). Thus,
units = "days since 1990-1-1" means the same as units = "days since 1990-1-1 00:00:00".

The time zone offset Z must be in one of the following five formats, where numeric hours may
optionally be prefixed with a + or - sign:

* The letter Z indicating zero offset, sometimes referred to as "Zulu Time".

* H, the hour alone, of one or two digits e.g. -6, 2, +11, which is sufficient for many time zones.

* H:M, where H is hour and M minute, each of one or two digits, e.g. 5:30.

» four digits, of which the first pair are the hours and the second the minutes e.g. 8530.

three digits, of which the first is the hour (0—9) e.g. 530.

See https://cfconventions.org for further information 39

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

If the time zone offset is the letter Z or begins with a sign, the space before it may be omitted.

While the default (of omitting the Z component) is an offset of zero, we suggest that a zero offset be
specified to avoid any confusion where omitting it might be misunderstood as indicating local time.

For example, seconds since 1992-10-8 15:15:42.5 -6:00 indicates seconds since October 8th, 1992 at
3 hours, 15 minutes and 42.5 seconds in the afternoon, in a time zone where the datetime is six
hours behind the default. Subtracting the time zone offset from a given datetime converts it to the
equivalent datetime with zero time zone offset e.g. 1989-12-31 18:00:00 -6 identifies the same
instant as 1990-1-1 0:0:0.

4.4.2. Calendar

The calendar defines the set of valid datetimes and their order. Note that the CF meaning of
"calendar” refers to datetimes, not to dates alone. Datetimes which are not permitted in a given
calendar are prohibited both in the time coordinate values and in the reference datetime string in
the units. It is recommended that the calendar be specified by the calendar attribute of the time
coordinate variable. The values currently defined for calendar are listed below.

Because the calendars have different sets of valid dates, and different treatments of leap seconds
(see below in this section, and Section 4.4.3, "Leap Seconds"), a given time coordinate value with
given units can represent different datetimes in different calendars; conversely, a given datetime is
represented by different time coordinate values in different calendars. Moreover, in different
calendars a given datetime can identify a different instant in the continuous physical dimension of
time.

The lengths of the months in the Gregorian calendar are used in all calendars except 360_day, none
(see Section 4.4.4, "Time Coordinates with no Annual Cycle") and explicitly defined calendars (see
Section 4.4.5, "Explicitly Defined Calendar"). The calendars differ in their treatment of leap years
(when there are 29 days in February instead of 28).

Leap seconds are adjustments made at irregular and unpredictable intervals in Coordinated
Universal Time (UTC). In response to slight variations in the Earth’s rotation speed, positive or
negative leap seconds are inserted in order to keep UTC close to mean solar time at 0 degrees_east
i.e. the time zone with the default (zero) time zone offset in UDUNITS and CF (see Section 4.4.1,
"Time Coordinate Units"). When a single positive leap second is introduced at the end of a minute,
that minute contains 61 seconds. The net number of leap seconds added to UTC between 1958-1-1
and 2025-1-1 is 37. The CF calendars differ in their treatment of leap seconds (see Section 4.4.3,
"Leap Seconds").

In the julian and the default standard calendar, dates in years before year 0 (i.e. before 0-1-1 0:0:0)
are not allowed, and the year in the reference datetime of the units must not be negative. In these
calendars, year zero has a special use to indicate a climatology (see Section 7.4, "Climatological
Statistics"), but this use of year zero is deprecated. In other calendars, year 0 is the year before year
1, and negative years are allowed.

standard

Mixed Gregorian/Julian calendar as defined by UDUNITS. This is the default. A deprecated
alternative name for this calendar is gregorian. The Gregorian and Julian calendars have the

40 See https://cfconventions.org for further information

https://en.wikipedia.org/wiki/Coordinated_Universal_Time
https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

same lengths of their months; they differ only in respect of the rules that decide which years are
leap years. In the standard calendar, datetimes after and including 1582-10-15 0:0:0 are in the
Gregorian calendar, in which a year is a leap year if either (i) it is divisible by 4 but not by 100 or
(i) it is divisible by 400. Datetimes before (and excluding) 1582-10-5 0:0:0 are in the Julian
calendar, in which any year that is divisible by 4 is a leap year. Year 1 AD or CE in the standard
calendar is also year 1 of the julian calendar. Negative years are invalid in time coordinates and
reference datetimes in the standard calendar. In the standard calendar, 1582-10-15 0:0:0 is exactly
1 day later than 1582-10-4 0:0:0. Therefore datetimes in the range from (and including) 1582-10-5
0:0:0 until (but excluding) 1582-10-15 0:0:0 are invalid, and must not be used as reference in
units. It is recommended that a reference datetime before the discontinuity should not be used
for datetimes after the discontinuity, and vice-versa. See also Section 4.4.3, "Leap Seconds".

proleptic_gregorian
A calendar with the Gregorian rules for leap years extended to dates before 1582-10-15. All dates

consistent with these rules are allowed, both before and after 1582-10-15 0:0:0. See also Section
4.4.3, "Leap Seconds".

julian
Julian calendar, in which a year is a leap year if it is divisible by 4, even if it is also divisible by
100. Year 1 AD or CE in the julian calendar is also year 1 of the standard calendar. Negative years
are invalid in time coordinates and reference datetimes in the julian calendar. See also Section
4.4.3, "Leap Seconds".

utce

A Gregorian calendar with leap seconds as prescribed by UTC. Datetimes before 1958-01-01 0:0:0
are not allowed in this calendar. Datetimes in the future are not allowed in this calendar,
because it is unknown when future leap seconds will occur. When a datetime is converted to a
time coordinate value or vice-versa in this calendar, any leap seconds (positive or negative) must
be counted that occurred in the interval between the datetime and the reference datetime in the
units. For any given instant, the utc datetime is behind the tai datetime, where "behind" means
the same as it does when describing a timezone to the west as being behind one to the east. The
difference between the two datetimes for a given instant of time is the net number of leap
seconds introduced since 1958-01-01. The difference was zero on that instant, when both
calendars began. This means that a given datetime in the utc calendar represents an instant that
is earlier than the same datetime in the tai calendar. See also Section 4.4.3, "Leap Seconds".

tai

A Gregorian calendar without leap seconds that is based on International Atomic Time (TAI).
Datetimes before 1958-01-01 0:0:0 are not allowed in this calendar. For any given instant, the tai
datetime is ahead of the utc datetime, where "ahead" means the same as it does when describing
a timezone to the east as being ahead of one to the west. The difference between the two
datetimes for a given instant of time is the net number of leap seconds introduced since 1958-01-
01. The difference was zero on that instant, when both calendars began. This means that a given
datetime in the tai calendar represents an instant that is later than the same datetime in the ute
calendar. See also Section 4.4.3, "Leap Seconds".

noleap or 365_day

A calendar with no leap years, i.e., all years are 365 days long, and there are no leap seconds.

See https://cfconventions.org for further information 41

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

all_leap or 366_day

A calendar in which every year is a leap year, i.e., all years are 366 days long, and there are no
leap seconds.

360_day

A calendar in which all years are 360 days, and divided into 30 day months, and there are no
leap seconds.

none

To be used when there is no annual cycle. See Section 4.4.4, "Time Coordinates with no Annual
Cycle".

Any other value may be given to the calendar attribute to describe an explicitly defined calendar.
See Section 4.4.5, "Explicitly Defined Calendar".

4.4.3. Leap Seconds

This section describes how to deal properly with leap seconds. Most people ignore the existence of
leap seconds, including many data producers and the CF standard before version 1.12. As a result,
the time coordinates of two real-world observational datasets could disagree by some number of
seconds if one has taken leap seconds into account and the other has not. Practically speaking, this
means that if you are working with real-world data, and if it’s important for your time coordinates
to be accurate to the second, you need to care about leap seconds. Otherwise, you need only to be
aware that the difference between two time coordinates might not exactly equal the duration of the
time interval between the two instants, but could be inaccurate by a number of seconds, if leap
seconds are involved. Relatedly, two instants with the same time of day on different days, which
would always be separated by a multiple of 86400 seconds if there were no leap seconds, will have
a few more seconds between them if leap seconds intervene.

Each calendar defines a set of valid combinations of the six numbers year-month-day-hour-minute-
second. We refer to this set as the calendar’s "set of datetimes". Fractions of seconds are allowed in
all calendars in addition to the integer number of seconds. In this section, we use the word timeline
to mean "continuous physical dimension of time". The valid datetimes identify discrete instants
along the timeline, in that sense.

You need to know the set of datetimes defined by the calendar in order to compute time coordinate
values from datetimes and vice-versa. Ignoring fractional seconds in datetimes, a time coordinate
value expressed in seconds equals the number of valid (integer-second) datetimes after (not
including) the reference datetime in the units up to (and including) the datetime that the time
coordinate represents. For instance, in units of seconds since 2024-9-14 11:12:00, the time
coordinate for the datetime 2024-9-14 11:12:03 is 3, because there are three datetimes (2024-9-14
11:12:01, 2024-9-14 11:12:02, 2024-9-14 11:12:03) following 2024-9-14 11:12:00 up to and including
2024-9-14 11:12:03. The coordinate for 2024-9-14 11:11:58 is -2, because there are two valid
datetimes (2024-9-14 11:11:59, 2024-9-14 11:11:58) from 2024-9-14 11:12:00 to (and including) 2024-
9-14 11:11:58, and the count is negative because it goes backwards. The signed difference between
the fractional seconds of the datetime and the reference is added to the time coordinate after
counting the seconds. This paragraph may appear to be excessively elaborate in describing a
usually obvious procedure, but it is necessary to be very careful about it when there are leap

42 See https://cfconventions.org for further information

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft
seconds.

The ute calendar is the only calendar which includes leap seconds in its set of datetimes. In all other
calendars, datetimes within leap seconds are not valid. Therefore reference datetimes in the units
attribute must not contain seconds equal to or greater than 60 unless the calendar is utc.

The standard, proleptic_gregorian, and julian calendars each have two variants. In one variant the
timeline does not include leap seconds. In the other variant, the timeline includes leap seconds,
even though they are not included in the valid set of datetimes. To resolve the ambiguity between
the variants of these calendars, the units_metadata attribute should be defined as well as the
calendar attribute, as described later in this section.

For standard, proleptic_gregorian, and julian calendars, there are the following cases:

1. The calendar is being used for a timeline in which leap seconds do not exist. This is the case
for a model simulation that defines every day as having a constant length of 86400 seconds.

2. The calendar is being used for a timeline in which leap seconds exist, and they are
correctly accounted for in the datetimes represented by the time coordinates. This could
be the case for observations from a platform with equipment which records UTC datetimes and
has prior knowledge of when new leap seconds are to be introduced, so that it is able to apply a
new leap second at the appropriate time. It could equally be the case for model whose timesteps
include leap seconds.

3. The calendar is being used for a timeline in which leap seconds exist, but some or all leap
seconds might not have not been correctly accounted for in the datetimes. This could be the
case for observations from a platform whose time recording equipment has a delay in applying
a new leap second.

4. It may be unknown whether leap seconds exist in the timeline.

Except in the utc calendar, when a time coordinate value is calculated from a datetime, or the
reverse, it is assumed that the coordinate value increases by exactly 60 seconds from the start of
any minute (identified by year, month, day, hour, minute, all being integers) to the start of the next
minute, because leap seconds are not valid datetimes. In other words, leap seconds (positive or
negative) are never counted in the standard, proleptic_gregorian, and julian calendars. When these
calendars are being be used for timelines with leap seconds (i.e. cases 2 and 3 and perhaps case 4),
the assumption of 60-second minutes has the following consequences:

* It is impossible to identify any instant during a leap second (i.e. between the end of the 60th
second of the last minute of one hour and the start of the first second of the next hour) by a time
coordinate e.g. 2016-12-31 23:59:60.5 cannot be represented by a time coordinate value.

* A datetime in the excluded range must not be used as a reference datetime e.g. seconds since
2016-12-31 23:59:60 is not a permitted value for units.

* The coordinate value does not count any leap seconds which occurred between the reference
datetime and the datetime represented by the coordinate. For instance, 60 seconds after
23:59:00 always means 0:0:0 on the next day, even if there is a leap second at 23:59:60, which
makes the actual interval 61 seconds between 23:59:00 and 0:0:0 on the next day.

Because of the last point, the difference between two coordinate values with the same units string

See https://cfconventions.org for further information 43

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

does not exactly equal the length of the interval between instants they represent if there were any
leap seconds between them. This discrepancy can happen in cases 2, 3 and 4 of the standard,
proleptic_gregorian, and julian calendars. By contrast, in case 1 of those calendars (i.e. a timeline
without leap seconds), and in all other calendars, the difference between two time coordinate
values with the same units string is always equal to the length of time between the instants they
represent. Furthermore, an inaccuracy results from converting a time coordinate to a datetime if
the interval includes leap seconds which were not known when the time coordinate was calculated
(possible in case 3 or 4). It is important to be aware of these disadvantages of the standard,
proleptic_gregorian and julian calendars when used with timelines including leap seconds.

If it is essential for leap seconds to be counted in time coordinates, so that they exactly equal time
intervals, you must use the utc calendar. For many applications of the standard,
proleptic_gregorian, and julian calendars, these inaccuracies are too small to matter, but there are
some applications where it is necessary to know about them. Therefore it is recommended that for
the standard, proleptic_gregorian, and julian calendars the appropriate treatment of leap seconds
should be indicated by giving the time coordinate variable a units_metadata attribute containing a
leap_seconds keyword with one of the permitted values none, utc or unknown. none means that leap
seconds do not exist in the timeline (i.e. case 1), utc means that leap seconds exist in the timeline
and the time coordinates correctly represent the datetimes (i.e. case 2), and unknown means that the
data-writer did not know or did not record whether the leap seconds exist in the timeline, nor how
they are treated if they did exist (i.e. cases 3 and 4). If the units_metadata attribute is not present, or
does not contain the leap_seconds keyword, the data-reader should assume leap_seconds: unknown.
A variable’s units_metadata attribute may only contain the leap_seconds keyword if the variable’s
calendar is one of standard, proleptic_gregorian, or julian.

Example 4.5. Use of units_metadata and calendar to define the treatment of leap seconds

variables:

float time_tai ;
time_tai:standard _name = "time" ;
time_tai:long_name = "Satellite data" ;
time_tai:calendar = "tai" ;
time_tai:units = "seconds since 2016-12-31 23:59:58" ;

float time_stdnone ;
time_stdnone:standard_name = "time" ;
time_stdnone:1long_name = "Model data with no leap seconds" ;
time_stdnone:calendar = "standard" ;
time_stdnone:units = "seconds since 2016-12-31 23:59:58" ;
time_stdnone:units_metadata = "leap_seconds: none" ;

float time_stdutc ;
time_stdutc:standard name = "time" ;
time_stdutc:long_name = "Model data with leap seconds or obs data with

accurate UTC" ;

time_stdutc:calendar = "standard" ;
time_stdutc:units = "seconds since 2016-12-31 23:59:58" ;
time_stdutc:units_metadata = "leap_seconds: utc" ;

float time_utc ;
time_utc:standard name = "time" ;
time_utc:long_name = "Time signal from UK National Physical Laboratory" ;

44 See https://cfconventions.org for further information

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

time_utc:calendar = "utc" ;
time_utc:units = "seconds since 2016-12-31 23:59:58" ;
float time_unknown ;
time_unknown:standard _name = "time" ;
time_unknown:1long_name = "Obs data with unreliable information on leap
seconds"” ;
time_unknown:calendar = "standard" ;
time_unknown:units = "seconds since 2016-12-31 23:59:58" ;
time_unknown:units_metadata = "leap_seconds: unknown" ;
data: // time coordinate variable and the datetime it represents
time_tai = 2; // 2017-1-1 0:0:0 because no leap seconds in the timeline
time_stdnone = 2; // 2017-1-1 0:0:0 because no leap seconds in the timeline
time_stdutc = 2; // 2017-1-1 0:0:0 because the leap second is not counted
time_utc = 2; // leap second 2016-12-31 23:59:60
time_unknown = 2; // unknown whether 2016-12-31 23:59:60 or 2017-1-1 0:0:0

This example shows five scalar time coordinate variables. Although they all have the value 2
and the same units attribute, they do not all refer to the same datetime, as shown in the
comments on their data values, because they have different treatments of the leap second that
was added to the UTC calendar at the end of 2016. The first four of them correspond to the
instants marked 2 seconds since 2016-12-31 23:59:58 in Figure 4.1.

The value of 2 seconds for time_stdnone, time_utc and time_tai can be correctly interpreted as
the length of the interval from the reference datetime 2016-12-31 23:59:58 to the datetime
indicated in the comment. In both time_stdnone and time_stdutc, the time coordinate
represents 2017-1-1 0:0:0, because 2016-12-31 23:59:60 is not permitted in the standard
calendar, hence only two valid datetimes with integer seconds are counted (2016-12-31
23:59:59 and 2017-1-1 0:0:0). However, the timeline for time_stdutc does include the leap
second, so the time interval from the reference datetime 2016-12-31 23:59:58 to 2017-1-1 0:0:0
is actually three seconds, not two as indicated by the time coordinate value. This is an example
of the standard calendar not counting a leap second in the coordinate value, with the
consequence that the difference between time coordinates does not exactly equal the duration
of the interval. An application may choose either to ignore this inaccuracy or to correct for it
when calculating the length of intervals which include the leap second. In the case of
time_unknown, we cannot convert the time coordinate to a datetime with certainty, because we
do not know whether 2017-1-1 0:0:0 is two or three seconds after 2016-12-31 23:59:58.

See https://cfconventions.org for further information

45

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

Figure 4.1. Illustration of the equivalence between datetimes and time coordinate values with
units="seconds since 2016-12-31 23:59:58" for various choices of the calendar attribute and leap_seconds
keyword.

date/time
2017-1-1 00:00:02

2017-1-1 00:00:01
2017-1-1 00:00:00
2016-12-31 23:59:60 2P Second
2016-12-31 23:59:59 - - -
2016-12-31 23:59:58 =

calendar leap_seconds -

seconds tai 0O 1 2 3 4
since standard none 0 1 2 3 4
2016-12-31 | standard utc 0 1 2 3
23:59:58 utc 0 1 2 3 4

This illustration shows that a given time coordinate value (the numbers in columns at the
bottom right) can represent different datetimes in different calendars. However, the
illustration cannot show another important point to keep in mind, that a given datetime may
identify different instants in different calendars.

The diagonal lines depict the timelines of the calendars. Along each line, a filled circle marks
the instant on the timeline that begins each second in the set of datetimes allowed by the
calendar. There is no meaning in the slight left-right displacement of the circles at each second,
which is done only so they can all be seen; they are supposed to be exactly coincident. As
explained in the text of this section, the time coordinate in seconds is the count of valid
datetimes (= the number of circles) that occur along the timeline after the reference datetime
2016-12-31 23:59:58 (which is the first circle on the line in every case, hence with a count of
zero as shown in the column below its group of circles), up to and including the datetime
represented. The instants marked 2 seconds since 2016-12-31 23:59:58 are the ones
represented by the first four time coordinate variables of Example 4.5.

A leap second was added to the UTC calendar at the end of 2016. The duration of the leap
second is shown by the shading. The utc calendar is the only one in which datetimes in the
leap second are valid; hence the black circle is the only marker of 2016-12-31 23:59:60. The
grey timeline of the utc variant of the standard calendar includes the the leap second as well,
but datetimes in the leap second are not valid in that calendar, so there is no grey circle for it.
The leap second does not appear in the timelines of the tai calendar and the none variant of
the standard calendar. Their timelines (red and purple) skip over the leap second, and they
have no circle for it. For those timelines, please imagine the digram having the shaded
rectangle cut out, and the cut edges joined, making the red and purple lines continuous,
passing smoothly from 2016-12-31 23:59:00 to 2017-1-1 00:00:00 as for all the other seconds.

46 See https://cfconventions.org for further information

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

4.4.4. Time Coordinates with no Annual Cycle

The calendar attribute may be set to none in climate experiments that simulate a fixed time of year.
The time of year is indicated by the date in the reference time of the units attribute. The time
coordinates that might apply in a perpetual July experiment are given in the following example.

Example 4.6. Perpetual time axis

variables:
double time(time) ;
time:long_name = "time" ;
time:units = "days since 1-7-15 0:0:0" ;
time:calendar = "none" ;
data:
time = 0., 1., 2., ...;

Here, all days simulate the conditions of 15th July, so it does not make sense to give them different
dates. The time coordinates are interpreted as 0, 1, 2, etc. days since the start of the experiment.

4.4.5. Explicitly Defined Calendar

If none of the calendars defined in Section 4.4.2, "Calendar" applies (e.g., calendars appropriate to a
different paleoclimate era), a calendar can be explicitly defined, in terms of permissible year-
month-day combinations. To do this, the lengths of each month are explicitly defined with the
month_lengths attribute of the time axis:

month_lengths

A vector of size 12, specifying the number of days in the months from January to December (in a
non-leap year).

If leap years are included, then two other attributes of the time axis must also be defined:

leap_year

An example of a leap year. It is assumed that all years that differ from this year by a multiple of
four are also leap years. If this attribute is absent, it is assumed there are no leap years.

leap_month
A value in the range 1-12, specifying which month is lengthened by a day in leap years
(1=January). If this attribute is not present, February (2) is assumed. This attribute is ignored if
leap_year is not specified.

When an explicitly defined calendar is being used, the calendar may be described by giving a value
not defined in Section 4.4.2, "Calendar" to the calendar attribute; alternatively, the attribute may be
omitted.

See https://cfconventions.org for further information 47

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

Example 4.7. Paleoclimate time axis

double time(time) ;
time:long_name = "time" ;
time:units = "days since 1-1-1 0:0:0" ;
time:calendar = "126 kyr B.P." ;
time:month_lengths = 34, 31, 32, 30, 29, 27, 28, 28, 28, 32, 32, 34 ;

4.5. Discrete Axis

The spatiotemporal coordinates described in sections 4.1-4.4 are continuous variables, and other
geophysical quantities may likewise serve as continuous coordinate variables, for instance density,
temperature or radiation wavelength. By contrast, for some purposes there is a need for an axis of a
data variable which indicates either an ordered list or an unordered collection, and does not
correspond to any continuous coordinate variable. Consequently such an axis may be called
“discrete”. A discrete axis has a dimension but might not have a coordinate variable. Instead, there
might be one or more auxiliary coordinate variables with this dimension (see preamble to section
5). Following sections define various applications of discrete axes, for instance section 6.1.1
“Geographical regions”, section 7.3.3 “Statistics applying to portions of cells”, section 9.3
“Representation of collections of features in data variables”.

48 See https://cfconventions.org for further information

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

Chapter 5. Coordinate Systems and Domain

A data variable’s dimensions are used to locate data values in time and space or as a function of
other independent variables. This is accomplished by associating these dimensions with the
relevant set of latitude, longitude, vertical, time and any non-spatiotemporal coordinates. This
section presents two methods for making that association: the use of coordinate variables, and the
use of auxiliary coordinate variables.

Any of a variable’s dimensions that is an independently varying latitude, longitude, vertical, or time
dimension (see Section 1.3, "Terminology”) and that has a size greater than one must have a
corresponding coordinate variable, i.e., a one-dimensional variable with the same name as the
dimension (see examples in Chapter 4, Coordinate Types). This is the only method of associating
dimensions with coordinates that is supported by [COARDS].

Any longitude, latitude, vertical or time coordinate which depends on more than one
spatiotemporal dimension must be identified by the coordinates attribute of the data variable. The
value of the coordinates attribute is a blank separated list of the names of auxiliary coordinate
variables. There is no restriction on the order in which the auxiliary coordinate variables appear in
the coordinates attribute string. The dimensions of an auxiliary coordinate variable must be a
subset of the dimensions of the variable with which the coordinate is associated, with three
exceptions. First, string-valued coordinates (Section 6.1, "Labels") will have a dimension for
maximum string length if the coordinate variable has a type of char rather than a type of string.
Second, if an auxiliary coordinate variable of a data variable that has been compressed by
gathering (Section 8.2, "Lossless Compression by Gathering") does not span the compressed
dimension, then its dimensions may be any subset of the data variable’s uncompressed dimensions,
i.e. any of the dimensions of the data variable except the compressed dimension, and any of the
dimensions listed by the compress attribute of the compressed coordinate variable. Third, in the
ragged array representations of data (Chapter 9, Discrete Sampling Geometries), special methods
are needed to connect the data and coordinates.

We recommend that the name of a multidimensional coordinate variable should not match the
name of any of its dimensions because that precludes supplying a coordinate variable for the
dimension. This practice also avoids potential bugs in applications that determine coordinate
variables by only checking for a name match between a dimension and a variable and not checking
that the variable is one dimensional.

If the longitude, latitude, vertical or time coordinate is multi-valued, varies in only one dimension,
and varies independently of other spatiotemporal coordinates, it is not permitted to store it as an
auxiliary coordinate variable. This is both to enhance conformance to COARDS and to facilitate the
use of generic applications that recognize the [NUG] convention for coordinate variables. An
application that is trying to find the latitude coordinate of a variable should always look first to see
if any of the variable’s dimensions correspond to a latitude coordinate variable. If the latitude
coordinate is not found this way, then the auxiliary coordinate variables listed by the coordinates
attribute should be checked. Note that it is permissible, but optional, to list coordinate variables as
well as auxiliary coordinate variables in the coordinates attribute. If the longitude, latitude, vertical
or time coordinate is single-valued, it may be stored either as a coordinate variable with a
dimension of size one, or as a scalar coordinate variable (Section 5.7, "Scalar Coordinate Variables").

See https://cfconventions.org for further information 49

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

If an axis attribute is attached to an auxiliary coordinate variable, it can be used by applications in
the same way the axis attribute attached to a coordinate variable is used. However, it is not
permissible for a data variable to have both a coordinate variable and an auxiliary coordinate
variable, or more than one of either type of variable, having an axis attribute with any given value
e.g. there must be no more than one axis attribute for X for any data variable. Note that if the axis
attribute is not specified for an auxiliary coordinate variable, it may still be possible to determine if
it is a spatiotemporal dimension from its own units or standard_name, or from the units and
standard_name of the coordinate variable corresponding to its dimensions (see Chapter 4, Coordinate
Types). For instance, auxiliary coordinate variables which lie on the horizontal surface can be
identified as such by their dimensions being horizontal. Horizontal dimensions are those whose
coordinate variables have an axis attribute of X or Y, or a units attribute indicating latitude and
longitude.

To geo-reference data horizontally with respect to the Earth, a grid mapping variable may be
provided by the data variable, using the grid_mapping attribute. If the coordinate variables for a
horizontal grid are not longitude and latitude, then a grid_mapping variable provides the
information required to derive longitude and latitude values for each grid location. If no grid
mapping variable is referenced by a data variable, then longitude and latitude coordinate values
shall be supplied in addition to the required coordinates. For example, the Cartesian coordinates of
a map projection may be supplied as coordinate variables and, in addition, two-dimensional
latitude and longitude variables may be supplied via the coordinates attribute on a data variable.
The use of the axis attribute with values X and Y is recommended for the coordinate variables (see
Chapter 4, Coordinate Types).

It is sometimes not practical to specify the latitude-longitude location of data which is
representative of geographic regions with complex boundaries. For this purpose, provision is made
in Section 6.1.1, "Geographic Regions" for indicating the region by a standardized name.

5.1. Independent Latitude, Longitude, Vertical, and
Time Axes

When each of a variable’s spatiotemporal dimensions is a latitude, longitude, vertical, or time
dimension, then each axis is identified by a coordinate variable.

Example 5.1. Independent coordinate variables

dimensions:
lat = 18 ;
lon = 36 ;
pres = 15 ;
time = 4 ;

variables:

float xwind(time,pres,lat,lon) ;
xwind:long_name = "zonal wind" ;
xwind:units = "m/s" ;

float lon(lon) ;
lon:long_name = "longitude" ;
lon:units = "degrees_east" ;

50 See https://cfconventions.org for further information

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

float lat(lat) ;
lat:long_name = "latitude" ;
lat:units = "degrees_north" ;
float pres(pres) ;
pres:long_name = "pressure” ;
pres:units = "hPa" ;
double time(time) ;
time:long_name = "time" ;
time:units = "days since 1990-1-1 0:0:0" ;

xwind(n,k,j,1) is associated with the coordinate values lon(i), 1at(j), pres(k), and time(n).

5.2. Two-Dimensional Latitude, Longitude, Coordinate
Variables

The latitude and longitude coordinates of a horizontal grid that was not defined as a Cartesian
product of latitude and longitude axes, can sometimes be represented using two-dimensional
coordinate variables. These variables are identified as coordinates by use of the coordinates
attribute.

Example 5.2. Two-dimensional coordinate variables

dimensions:

xc = 128 ;

yc = 64 ;

lev = 18 ;

variables:

float T(lev,yc,xc) ;
T:long_name = "temperature" ;
T:units = "K" ;
T:coordinates = "lon lat" ;

float xc(xc) ;
xc:axis = "X" ;
xc:long_name = "x-coordinate in Cartesian system" ;
xc:units = "m" ;

float yc(yc) ;
yc:axis = "Y" ;
yc:long_name = "y-coordinate in Cartesian system" ;
yc:units = "m" ;

float lev(lev) ;
lev:long_name = "pressure level" ;
lev:units = "hPa" ;

float lon(yc,xc) ;
lon:1long_name = "longitude" ;
lon:units = "degrees_east" ;

float lat(yc,xc) ;
lat:long_name = "latitude" ;

See https://cfconventions.org for further information 51

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

lat:units = "degrees_north" ;

T(k,j,i) is associated with the coordinate values lon(j,i), lat(j,i), and lev(k). The vertical
coordinate is represented by the coordinate variable lev(lev) and the latitude and longitude
coordinates are represented by the auxiliary coordinate variables 1at(yc,xc) and lon(yc,xc) which
are identified by the coordinates attribute.

Note that coordinate variables are also defined for the xc and yc dimensions. This faciliates
processing of this data by generic applications that don’t recognize the multidimensional latitude
and longitude coordinates.

5.3. Reduced Horizontal Grid

A "reduced" longitude-latitude grid is one in which the points are arranged along constant latitude
lines with the number of points on a latitude line decreasing toward the poles. Storing this type of
gridded data in two-dimensional arrays wastes space, and results in the presence of missing values
in the 2D coordinate variables. We recommend that this type of gridded data be stored using the
compression scheme described in Section 8.2, "Lossless Compression by Gathering". Compression
by gathering preserves structure by storing a set of indices that allows an application to easily
scatter the compressed data back to two-dimensional arrays. The compressed latitude and
longitude auxiliary coordinate variables are identified by the coordinates attribute.

Example 5.3. Reduced horizontal grid

dimensions:
londim = 128 ;
latdim = 64 ;
rgrid = 6144 ;

variables:

float PS(rgrid) ;
PS:long_name = "surface pressure” ;
PS:units = "Pa" ;
PS:coordinates = "lon lat" ;
float lon(rgrid) ;
lon:long_name = "longitude" ;
lon:units = "degrees_east" ;
float lat(rgrid) ;
lat:long_name = "latitude" ;
lat:units = "degrees_north" ;
int rgrid(rgrid);
rgrid:compress = "latdim londim";

PS(n) is associated with the coordinate values lon(n), lat(n). Compressed grid index (n) would be
assigned to 2D index (j, 1) (C index conventions) where

52 See https://cfconventions.org for further information

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

rgrid(n) / 128
rgrid(n) - 128%j

—_
I 11

Notice that even if an application does not recognize the compress attribute, the grids stored in this
format can still be handled, by an application that recognizes the coordinates attribute.

5.4. Timeseries of Station Data

This section has been superseded by the treatment of time series as a type of discrete sampling
geometry in Chapter 9.

5.5. Trajectories

This section has been superseded by the treatment of time series as a type of discrete sampling
geometry in Chapter 9.

5.6. Horizontal Coordinate Reference Systems, Grid
Mappings, and Projections

A grid mapping variable may be referenced by a data variable in order to explicitly declare the
coordinate reference system (CRS) used for the horizontal spatial coordinate values. For example, if
the horizontal spatial coordinates are latitude and longitude, the grid mapping variable can be used
to declare the figure of the earth (WGS84 ellipsoid, sphere, etc.) they are based on. If the horizontal
spatial coordinates are easting and northing in a map projection, the grid mapping variable
declares the map projection CRS used and provides the information needed to calculate latitude
and longitude from easting and northing.

When the horizontal spatial coordinate variables are not longitude and latitude, it is required that
further information is provided to geo-locate the horizontal position. A grid mapping variable
provides this information.

If no grid mapping variable is provided and the coordinate variables for a horizontal grid are not
longitude and latitude, then it is required that the latitude and longitude coordinates are supplied
via the coordinates attribute. Such coordinates may be provided in addition to the provision of a
grid mapping variable, but that is not required.

When a data variable is representative of cells of non-zero size, and the coordinate variables are
not longitude and latitude, bounds variables should be provided for vertices of the cell boundaries
in the horizontal coordinates of the grid (see Section 7.1, "Cell Boundaries"). The grid mapping
variable provides then the information to convert bounds in latitude and longitude coordinates,
and it is optional for the dataset to provide these. If no grid mapping variable is provided, then the
cell extents in latitude and longitude coordinate system should be provided (see Section 7.1, "Cell
Boundaries" and especially Example 7.2 for the common case of four-sided cells).

A grid mapping variable provides the description of the mapping via a collection of attached
attributes. It is of arbitrary type since it contains no data. Its purpose is to act as a container for the

See https://cfconventions.org for further information 53

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

attributes that define the mapping. The one attribute that all grid mapping variables must have is
grid_mapping_name, which takes a string value that contains the mapping’s name. The other
attributes that define a specific mapping depend on the value of grid_mapping_name. The valid values
of grid_mapping_name along with the attributes that provide specific map parameter values are
described in Appendix F, Grid Mappings.

The grid mapping variables are associated with the data and coordinate variables by the
grid_mapping attribute. This attribute is attached to data variables so that variables with different
mappings may be present in a single file. The attribute takes a string value with two possible
formats. In the first format, it is a single word, which names a grid mapping variable. In the second
format, it is a blank-separated list of words <gridMappingVariable>: <coordinatesVariable>
[<coordinatesVariable> -] [<gridMappingVariable>: <coordinatesVariable>-:-], which identifies
one or more grid mapping variables, and with each grid mapping associates one or more
coordinatesVariables, i.e. coordinate variables or auxiliary coordinate variables.

Where an extended <gridMappingVariable>: <coordinatesVariable> [<coordinatesVariable>] entity
is defined, then the order of the <coordinatesVariable> references within the definition provides an
explicit order for these coordinate value variables, which is used if they are to be combined into
individual coordinate tuples.

This order is only significant if crs_wkt is also specified within the referenced grid mapping
variable. Explicit 'axis order' is important when the grid mapping variable contains an attribute
crs_wkt as it is mandated by the OGC CRS-WKT standard that coordinate tuples with correct axis
order are provided as part of the reference to a Coordinate Reference System.

Using the simple form, where the grid_mapping attribute is only the name of a grid mapping
variable, 2D latitude and longitude coordinates for a projected coordinate reference system use the
same geographic coordinate reference system (ellipsoid and prime meridian) as the projection is
projected from.

The grid_mapping variable may identify datums (such as the reference ellipsoid, the geoid or the
prime meridian) for horizontal or vertical coordinates. Therefore a grid mapping variable may be
needed when the coordinate variables for a horizontal grid are longitude and latitude. The
grid_mapping_name of latitude_longitude should be used in this case.

The expanded form of the grid_mapping attribute is required if one wants to store coordinate
information for more than one coordinate reference system. In this case each coordinate or
auxiliary coordinate is defined explicitly with respect to no more than one grid_mapping variable.
This syntax may be used to explicitly link coordinates and grid mapping variables where only one
coordinate reference system is used. In this case, all coordinates and auxiliary coordinates of the
data variable not named in the grid_mapping attribute are unrelated to any grid mapping variable.
All coordinate names listed in the grid_mapping attribute must be coordinate variables or auxiliary
coordinates of the data variable.

In order to make use of a grid mapping to directly calculate latitude and longitude values it is
necessary to associate the coordinate variables with the independent variables of the mapping. This
is done by assigning a standard_name to the coordinate variable. The appropriate values of the
standard_name depend on the grid mapping and are given in Appendix F, Grid Mappings.

54 See https://cfconventions.org for further information

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

Example 5.6. Rotated pole grid

dimensions:

rlon = 128 ;

rlat = 64 ;

lev = 18 ;

variables:

float T(lev,rlat,rlon) ;
T:long_name = "temperature" ;
T:units = "K" ;
T:coordinates = "lon lat" ;
T:grid_mapping = "rotated_pole" ;

char rotated_pole ;
rotated_pole:grid_mapping_name = "rotated_latitude_longitude" ;
rotated_pole:grid_north_pole_latitude = 32.5 ;
rotated_pole:grid_north_pole_longitude = 170. ;

float rlon(rlon) ;
rlon:long_name = "longitude in rotated pole grid" ;
rlon:units = "degrees" ;
rlon:standard_name = "grid_longitude";

float rlat(rlat) ;
rlat:long_name = "latitude in rotated pole grid" ;
rlat:units = "degrees" ;
rlat:standard_name = "grid_latitude";

float lev(lev) ;
lev:long_name = "pressure level" ;
lev:units = "hPa" ;

float lon(rlat,rlon) ;
lon:long_name = "longitude" ;
lon:units = "degrees_east" ;

float lat(rlat,rlon) ;
lat:long_name = "latitude" ;
lat:units = "degrees_north" ;

A CF compliant application can determine that rlon and rlat are longitude and latitude values in the
rotated grid by recognizing the standard names grid_longitude and grid_latitude. Note that the
units of the rotated longitude and latitude axes are given as degrees. This should prevent a COARDS
compliant application from mistaking the variables rlon and rlat to be actual longitude and
latitude coordinates. The entries for these names in the standard name table indicate the
appropriate sign conventions for the units of degrees.

Example 5.7. Lambert conformal projection
dimensions:
y = 228;

X = 306;
time = 41;

See https://cfconventions.org for further information 55

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

variables:
int Lambert Conformal;
Lambert_Conformal:grid_mapping_name = "lambert_conformal_conic";
Lambert_Conformal:standard_parallel = 25.0;
Lambert_Conformal:longitude_of_central_meridian
Lambert_Conformal:latitude_of_projection_origin
double y(y);
y:units = "km";
y:long_name = "y coordinate of projection";
y:standard_name = "projection_y_coordinate";
double x(x);
x:units = "km";
x:long_name = "x coordinate of projection";
x:standard_name = "projection_x_coordinate";
double lat(y, x);
lat:units = "degrees_north";
lat:long_name = "latitude coordinate";
lat:standard_name = "latitude";
double Ton(y, x);
lon:units = "degrees_east";
lon:long_name = "longitude coordinate";
lon:standard_name = "longitude";
int time(time);
time:long_name = "forecast time";
time:units = "hours since 2004-06-23T722:00:007";
float Temperature(time, y, x);
Temperature:units = "K";
Temperature:long_name = "Temperature @ surface";
Temperature:missing_value = 9999.0;
Temperature:coordinates = "lat lon";
Temperature:grid_mapping = "Lambert_Conformal";

265.0;
25.0;

An application can determine that x and y are the projection coordinates by recognizing the
standard names projection_x_coordinate and projection_y_coordinate. The grid mapping variable
Lambert_Conformal contains the mapping parameters as attributes, and is associated with the
Temperature variable via its grid_mapping attribute.

Example 5.8. Latitude and longitude on a spherical Earth

dimensions:
lat = 18 ;
lon = 36 ;
variables:
double lat(lat) ;
double lon(lon) ;
float temp(lat, lon) ;
temp:long_name = "temperature" ;
temp:units = "K" ;
temp:grid_mapping = "crs" ;

56 See https://cfconventions.org for further information

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

int crs ;
crs:grid_mapping_name = "latitude_longitude"
crs:semi_major_axis = 6371000.0 ;
crs:inverse_flattening = 0 ;

Example 5.9. Latitude and longitude on the WGS 1984 datum

dimensions:
lat = 18 ;
lon = 36 ;
variables:
double lat(lat) ;
double 1lon(lon) ;
float temp(lat, lon) ;
temp:long_name = "temperature" ;
temp:units = "K" ;
temp:grid_mapping = "crs" ;
int crs ;
crs:grid_mapping_name = "latitude_longitude";
crs:longitude_of_prime_meridian = 0.0 ;
crs:semi_major_axis = 6378137.0 ;
crs:inverse_flattening = 298.257223563 ;

Example 5.10. British National Grid

dimensions:

z = 100;

y = 100000 ;

x = 100000 ;

variables:

double x(x) ;
x:standard_name = "projection_x_coordinate" ;
x:long_name = "Easting" ;
x:units = "m" ;

double y(y) ;
y:standard_name = "projection_y_coordinate" ;
y:long_name = "Northing" ;
y:units = "m" ;

double z(z) ;
z:standard_name = "height_above_reference_ellipsoid" ;
z:long_name = "height_above_osgb_newlyn_datum_masl" ;
z:units = "m" ;

double lat(y, x) ;
lat:standard_name = "latitude" ;
lat:units = "degrees_north" ;

double lon(y, x) ;

lon:standard_name = "longitude" ;

See https://cfconventions.org for further information 57

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

lon:units = "degrees_east" ;
float temp(z, vy, Xx) ;
temp:standard_name = "air_temperature" ;
temp:units = "K" ;
temp:coordinates = "lat lon" ;
temp:grid_mapping = "crs0SGB: x y crsWGS84: 1lat lon" ;
float pres(z, y, x) ;
pres:standard_name = "air_pressure" ;
pres:units = "Pa" ;
pres:coordinates = "lat lon" ;
pres:grid_mapping = "crs0SGB: x y crsWGS84: 1lat lon" ;
int ¢rs0SGB ;
crs0SGB:grid_mapping_name = "transverse_mercator"”;
crs0SGB:semi_major_axis = 6377563.396 ;
crs0SGB:inverse_flattening = 299.3249646 ;
crs0SGB: longitude_of_prime_meridian = 0.0 ;
crs0SGB:1latitude_of_projection_origin = 49.
crs0SGB:longitude_of_central_meridian = -2.
crs0SGB:scale_factor_at_central_meridian
crs0SGB: false_easting = 400000.0 ;
crs0SGB: false_northing = -100000.0 ;
crs0SGB:unit = "metre" ;
int crsWGS84 ;
crsWGS84:grid_mapping_name = "latitude_longitude";
crsWGS84:1ongitude_of_prime_meridian = 0.0 ;
crsWGS84:semi_major_axis = 6378137.0 ;
crsWGS84:inverse_flattening = 298.257223563 ;

~=

1 N O
S oo

9996012717 ;

5.6.1. Use of the CRS Well-known Text Format

An optional grid mapping attribute called crs_wkt may be used to specify multiple coordinate
system properties in so-called well-known text format (usually abbreviated to CRS WKT or OGC
WKT). The CRS WKT format is widely recognised and used within the geoscience software
community. As such it represents a versatile mechanism for encoding information about a variety
of coordinate reference system parameters in a highly compact notational form. The translation of
CF coordinate variables to/from OGC Well-Known Text (WKT) format is shown in Examples 5.11
and 5.12 below and described in detail in https://github.com/cf-convention/cf-conventions/wiki/
Mapping-from-CF-Grid-Mapping-Attributes-to-CRS-WKT-Elements.

The crs_wkt attribute should comprise a text string that conforms to the WKT syntax as specified in
reference [OGC_WKT-CRS]. If desired the text string may contain embedded newline characters to
aid human readability. However, any such characters are purely cosmetic and do not alter the
meaning of the attribute value. It is envisaged that the value of the crs_wkt attribute typically will
be a single line of text, one intended primarily for machine processing. Other than the requirement
to be a valid WKT string, the CF convention does not prescribe the content of the crs_wkt attribute
since it will necessarily be context-dependent.

Where a crs_wkt attribute is added to a grid_mapping, the extended syntax for the grid_mapping

58 See https://cfconventions.org for further information

https://github.com/cf-convention/cf-conventions/wiki/Mapping-from-CF-Grid-Mapping-Attributes-to-CRS-WKT-Elements
https://github.com/cf-convention/cf-conventions/wiki/Mapping-from-CF-Grid-Mapping-Attributes-to-CRS-WKT-Elements
https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

attribute enables the list of variables containing coordinate values being referenced to be explicitly
stated and the CRS WKT Axis order to be explicitly defined. The explicit definition of WKT CRS Axis
order is expected by the OGC standards for referencing by coordinates. Software implementing
these standards are likely to expect to receive coordinate value tuples, with the correct coordinate
value order, along with the coordinate reference system definition that those coordinate values are
defined with respect to.

The order of the <coordinatesVariable> references within the grid_mapping attribute definition
defines the order of elements within a derived coordinate value tuple. This enables an application
reading the data from a file to construct an array of coordinate value tuples, where each tuple is
ordered to match the specification of the coordinate reference system being used whilst the array
of tuples is structured according to the netCDF definition. It is the responsibility of the data
producer to ensure that the <coordinatesVariable> list is consistent with the CRS WKT definition of
CS AXIS, with the correct number of entries in the correct order (note: this is not a conformance
requirement as CF conformance is not dependent on CRS WKT parsing).

For example, a file has two coordinate variables, lon and lat, and a grid mapping variable crs with
an associated crs_wkt attribute; the WKT definition defines the AXIS order as ["latitude",
"longitude"]. The grid_mapping attribute is thus given a value crs:lat lon to define that where
coordinate pairs are required, these shall be ordered (lat, lon), to be consistent with the provided
crs_wkt string (and not order inverted). A 2-D array of (lat, lon) tuples can then be explicitly derived
from the combination of the lat and lon variables.

The crs_wkt attribute is intended to act as a supplement to other single-property CF grid mapping
attributes (as described in Appendix F); it is not intended to replace those attributes. If data
producers omit the single-property grid mapping attributes in favour of the crs_wkt attribute,
software which cannot interpret crs_wkt will be unable to use the grid_mapping information.
Therefore the CRS should be described as thoroughly as possible with the single-property grid
mapping attributes as well as by crs_wkt.

In cases where CRS property values can be represented by both a single-property grid mapping
attribute and the crs_wkt attribute, the grid mapping should be provided, and if both are provided,
the onus is on data producers to ensure that their property values are consistent. Therefore
information from either one (or both) may be read in by the user without needing to check both.
However, if the two values of a given property are different, the CRS information cannot be
interpreted accurately and users should inform the provider so the issue can be addressed. For
example, if the semi-major axis length of the ellipsoid defined by the grid mapping attribute
semi_major_axis disagrees with the crs_wkt attribute (via the WKT SPHEROID[:--] element), the value of
this attribute cannot be interpreted accurately. Naturally if the two values are equal then no
ambiguity arises.

Likewise, in those cases where the value of a CRS WKT element should be used consistently across
the CF-netCDF community (names of projections and projection parameters, for example) then, the
values shown in https://github.com/cf-convention/cf-conventions/wiki/Mapping-from-CF-Grid-
Mapping-Attributes-to-CRS-WKT-Elements should be preferred; these are derived from the
OGP/EPSG registry of geodetic parameters, which is considered to represent the definitive authority
as regards CRS property names and values.

Examples 5.11 illustrates how the coordinate system properties specified via the crs grid mapping

See https://cfconventions.org for further information 59

https://github.com/cf-convention/cf-conventions/wiki/Mapping-from-CF-Grid-Mapping-Attributes-to-CRS-WKT-Elements
https://github.com/cf-convention/cf-conventions/wiki/Mapping-from-CF-Grid-Mapping-Attributes-to-CRS-WKT-Elements
https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

variable in Example 5.9 might be expressed using a crs_wkt attribute. Example 5.12 also illustrates
the addition of the crs_wkt attribute, but here the attribute is added to the crs variable of a
simplified variant of Example 5.10. For brevity in Example 5.11, only the grid mapping variable and
its grid_mapping_name and crs_wkt attributes are included; all other elements are as per the Example
5.9. Names of projection. PARAMETERs follow the spellings used in the EPSG geodetic parameter

registry.

Example 5.12 illustrates how certain WKT elements - all of which are optional - can be used to
specify CRS properties not covered by existing CF grid mapping attributes, including:

 use of the VERT_DATUM element to specify vertical datum information

» use of additional PARAMETER elements (albeit not essential ones in this example) to define the
location of the false origin of the projection

» use of AUTHORITY elements to specify object identifier codes assigned by an external authority,
OGP/EPSG in this instance

Example 5.11. Latitude and longitude on the WGS 1984 datum + CRS WKT

float data(latitude, longitude) ;
data:grid_mapping = "crs: latitude, longitude" ;

int crs ;
crs:grid_mapping_name = "latitude_longitude";
crs:longitude_of_prime_meridian = 0.0 ;
crs:semi_major_axis = 6378137.0 ;
crs:inverse_flattening = 298.257223563 ;
crs:crs_wkt =

GEODCRS["WaS 84",

DATUM["Wor1ld Geodetic System 1984",
ELLIPSOID["WGS 84",6378137,298.257223563,

LENGTHUNIT["metre",1.0]11,

PRIMEM["Greenwich",0],

(S[ellipsoidal,3],
AXIS["(1at)",north,ANGLEUNIT["degree",0.0174532925199433]],
AXIS["(lon)",east,ANGLEUNIT["degree",0.0174532925199433]],
AXIS["ellipsoidal height (h)",up,LENGTHUNIT["metre",1.0]]]

Note: To enhance readability of these examples, the WKT value has been split across multiple lines
and embedded quotation marks (") left unescaped - in real netCDF files such characters would need
to be escaped. In CDL, within the CRS WKT definition string, newlines would need to be encoded
within the string as \n and double quotes as \". Also for readability, we have dropped the quotation
marks which would delimit the entire crs_wkt string. This pseudo CDL will not parse directly.

60 See https://cfconventions.org for further information

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

Example 5.12. British National Grid + Newlyn Datum in CRS WKT format

dimensions:

lat =
lon =

648 ;
048 ;

y =18
X = 36 ;
variables:
double x(x) ;
x:standard_name = "projection_x_coordinate" ;

x:units = "m" ;
double y(y) ;
y:standard_name = "projection_y_coordinate" ;

y:units = "m" ;

float

temp(y, x) ;

temp:long_name = "temperature" ;
temp:units = "K" ;
temp:coordinates = "lat lon" ;
temp:grid_mapping = "ers: x y" ;

int crs ;
crs:grid_mapping_name = "transverse_mercator" ;
crs:longitude_of_central_meridian = -2. ;
crs:false_easting = 400000. ;
crs:false_northing = -100000. ;
crs:latitude_of_projection_origin = 49. ;
crs:scale factor_at _central _meridian = 0.9996012717 ;
crs:longitude_of_prime_meridian = 0. ;
crs:semi_major_axis = 6377563.396 ;
crs:inverse_flattening = 299.324964600004 ;
crs:projected_coordinate_system_name = "0SGB 1936 / British National Grid" ;
crs:geographic_coordinate_system_name = "0SGB 1936" ;
crs:horizontal_datum_name = "0SGB_1936" ;

Crs.
Crs.
Crs.
Crs.

reference_ellipsoid_name = "Airy 1830" ;

prime_meridian_name = "Greenwich" ;

towgs84 = 375., -111., 431., 0., 0., 0., 0. ;

crs_wkt = "COMPOUNDCRS["0SGB 1936 / British National Grid + ODN",

PROJCRS["0SGB 1936 / British National Grid",

BASEGEODCRS["0SGB 1936",
DATUM["0SGB 1936",
ELLIPSOID["Airy 1830", 6377563.396, 299.3249646,
LENGTHUNIT["metre",1.0]]
15
PRIMEM ["Greenwich", 0],
UNIT ["degree", 0.0174532925199433]
1,
CONVERSION["0SGB",
METHOD["Transverse Mercator"],
PARAMETER["False easting”, 400000, LENGTHUNIT["metre",1.011,
PARAMETER["False northing", -100000, LENGTHUNIT["metre",1.0]],
PARAMETER["Longitude of natural origin", -2.0,

See https://cfconventions.org for further information

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

ANGLEUNIT["degree",0.0174532925199433]1],
PARAMETER["Latitude of natural origin", 49.0,
ANGLEUNIT["degree",0.0174532925199433]1],
PARAMETER["Longitude of false origin", -7.556,
ANGLEUNIT["degree",0.0174532925199433]],
PARAMETER["Latitude of false origin", 49.766,
ANGLEUNIT["degree",0.0174532925199433]],
PARAMETER["Scale factor at natural origin", 0.9996012717,
SCALEUNIT["Unity",1.0]]
IE
CS[Cartesian, 2],
AXIS["easting (X)",6east],
AXIS["northing (Y)",north],
LENGTHUNIT["metre",1.0],
ID["EPSG",27700]
1.
VERTCRS["Newlyn",
VDATUM["Ordnance Datum Newlyn"],
CS[vertical,1],
AXIS["gravity-related height (H)",up],
LENGTHUNIT["metre",1.0],
ID["EPSG",5701]

1"

Note: There are unescaped double quotes and newlines and the quotation marks which would
delimit the entire crs_wkt string are missing in this example. This is to enhance readability, but it
means that this pseudo CDL will not parse directly.

The preceding two example (5.11 and 5.12) may be combined, if the data provider desires to
provide explicit latitude and longitude coordinates as well as projection coordinates and to provide
CRS WKT referencing for both sets of coordinates. This is demonstrated in example 5.13.

Example 5.13. British National Grid + Newlyn Datum + referenced WGS84 Geodetic in CRS WKT format

double x(x) ;
x:standard_name
x:units = "m" ;

double y(y) ;
y:standard_name = "projection_y_coordinate" ;
y:units = "m" ;

double lat(y, x) ;
lat_standard_name = "latitude" ;
lat:units = "degrees_north" ;

double lon(y, x) ;
lon_standard_name = "longitude" ;

lon:units = "degrees_east" ;

"projection_x_coordinate" ;

62 See https://cfconventions.org for further information

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

float temp(y, x) ;
temp:long_name = "temperature" ;
temp:units = "K" ;
temp:coordinates = "lat lon" ;
temp:grid_mapping = "crs_osgb: x y crs_wgs84: latitude longitude" ;

int crs_wgs84 ;
crs_wgs84:grid_mapping_name = "latitude_longitude";
crs_wgs84:crs_wkt = ...

int crs_osgb ;
crs_osgb:grid_mapping_name = "transverse_mercator" ;
crs_osgb:crs_wkt = ...

Note: There are unescaped double quotes and newlines and the quotation marks which would
delimit the entire crs_wkt string are missing in this example. This is to enhance readability, but it
means that this pseudo CDL will not parse directly.

5.7. Scalar Coordinate Variables

When a variable has an associated coordinate which is single-valued, that coordinate may be
represented as a scalar variable (i.e. a data variable which has no netCDF dimensions). Since there
is no associated dimension these scalar coordinate variables should be attached to a data variable
via the coordinates attribute.

The use of scalar coordinate variables is a convenience feature which avoids adding size one
dimensions to variables. A numeric scalar coordinate variable has the same information content
and can be used in the same contexts as a size one numeric coordinate variable. Similarly, a string-
valued scalar coordinate variable has the same meaning and purposes as a size one string-valued
auxiliary coordinate variable (Section 6.1, "Labels"). Note however that use of this feature with a
latitude, longitude, vertical, or time coordinate will inhibit COARDS conforming applications from
recognizing them.

Once a name is used for a scalar coordinate variable it can not be used for a 1D coordinate variable.
For this reason we strongly recommend against using a name for a scalar coordinate variable that
matches the name of any dimension in the file.

If a data variable has two or more scalar coordinate variables, they are regarded as though they
were all independent coordinate variables with dimensions of size one. If two or more single-
valued coordinates are not independent, but have related values (this might be the case, for
instance, for time and forecast period, or vertical coordinate and model level number, Section 6.2,
"Alternative Coordinates"), they should be stored as coordinate or auxiliary coordinate variables of
the same size one dimension, not as scalar coordinate variables.

Example 5.14. Multiple forecasts from a single analysis

dimensions:

See https://cfconventions.org for further information 63

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

lat = 180 ;

lon = 360 ;

time = UNLIMITED ;
variables:

double atime
atime:standard_name = "forecast reference_time" ;
atime:units = "hours since 1999-01-01 00:00" ;
double time(time);
time:standard _name = "time" ;
time:units = "hours since 1999-01-01 00:00" ;
double lon(lon) ;
lon:long_name = "station longitude";
lon:units = "degrees_east";
double lat(lat) ;
lat:long_name = "station latitude" ;
lat:units = "degrees_north" ;
double p500
p500:1ong_name = "pressure" ;
p500:units = "hPa" ;
p500:positive = "down" ;
float height(time,lat,lon);
height:long_name = "geopotential height" ;
height:standard_name = "geopotential_height" ;
height:units = "m" ;
height:coordinates = "atime p500" ;
data:
time = 6., 12., 18., 24. ;
atime = 0. ;
p500 = 500. ;

In this example both the analysis time and the single pressure level are represented using scalar
coordinate variables. The analysis time is identified by the standard name forecast_reference_time
while the valid time of the forecast is identified by the standard name time.

5.8. Domain Variables

A domain describes data locations and cell properties. It defines cells that span a collection of
dimensions with cell coordinates, cell measures, and coordinate reference systems.

A data variable defines its domain via its own attributes, but a domain variable provides the
description of a domain in the absence of any data values. The variable should be a scalar (i.e. it has
no dimensions) of arbitrary type, and the value of its single element is immaterial. It acts as a
container for the attributes that define the domain. The purpose of a domain variable is to provide
domain information to applications that have no need of data values at the domain’s locations, thus
removing any ambiguity when retrieving a domain from a dataset. Ancillary variables and cell
methods are not part of the domain, because they are only defined in relation to data values.

The domain variable supports the same attributes as are allowed on a data variable for describing a

64 See https://cfconventions.org for further information

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

domain, with exactly the same meanings and syntaxes, as described in Appendix A, Attributes. If an
attribute is needed by a particular data variable to describe its domain, then that attribute would
also be needed by the equivalent domain variable.

The dimensions of the domain must be stored with the dimensions attribute, and the presence of a
dimensions attribute will identify the variable as a domain variable. Therefore the dimensions
attribute must not be present on any variables that are to be interpreted as data variables. It is
necessary to list these dimensions, rather than inferring them from the contents of the other
attributes, as it can not be guaranteed that the referenced variables span all of the required
dimensions (as could be the case for a discrete axis, for instance). The value of the dimensions
attribute is a blank separated list of the dimension names. There is no restriction on the order in
which the dimensions appear in the dimensions attribute string. If a domain has no named
dimensions then the value of the dimensions attribute must be an empty string, as could be the case
if the dimensions of the domain are all defined implicitly by scalar coordinate variables.

The dimensions listed by the dimensions attribute constrain the dimensions that may be spanned by
variables referenced from any of the other attributes, in the same way that the array dimensions
perform that role for a data variable. For instance, all variables named by the cell_measures
attribute (Section 7.2, "Cell Measures") of a domain variable must span a subset of zero or more of
the dimensions given by the dimensions attribute.

It is optional for coordinate variables to be listed by a domain variable’s coordinates attribute. Any
coordinate variable that shares its name with a dimension given by the dimensions attribute will be
considered as part of the domain definition.

It is recommended that a domain variable has a 1ong_name attribute to describe its contents.

It is recommended that a domain variable does not have any of the attributes marked in Appendix
A, Attributes as applicable to data variables except those which are also marked as applicable to
domain variables.

Multiple domain variables may exist in a file with, or without, data variables. Note that the data
variable attributes describing its domain can not be replaced by a reference to a domain variable.

Example 5.15. A domain with independent coordinate variables.

dimensions:
lat = 18 ;
lon = 36 ;
pres = 15 ;
time = 4 ;

variables:

char domain ;

domain:dimensions = "time pres lat lon" ;

domain:long_name = "Domain with independent coordinate variables" ;
float lon(lon) ;

lon:long_name = "longitude" ;

lon:units = "degrees_east" ;
float lat(lat) ;

See https://cfconventions.org for further information 65

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

lat:long_name = "latitude" ;
lat:units = "degrees_north" ;
float pres(pres) ;
pres:long_name = "pressure" ;
pres:units = "hPa" ;
double time(time) ;
time:long_name = "time" ;
time:units = "days since 1990-1-1 0:0:0" ;

In this example the data variable xwind from the Independent coordinate variables example
has been replaced by the domain variable domain.

Example 5.16. A domain with a rotated pole grid and a scalar coordinate variable.

dimensions:
rlon = 128 ;
rlat = 64 ;
lev = 18 ;

variables:
char domain ;
domain:dimensions = "lev rlat rlon" ;
domain:coordinates = "lon lat time" ;
domain:grid_mapping = "rotated_pole" ;
domain:long_name = "Domain with grid mapping and scalar coordinate" ;
char rotated_pole ;
rotated_pole:grid_mapping_name = "rotated_latitude_longitude" ;
rotated_pole:grid_north_pole_latitude = 32.5 ;
rotated_pole:grid_north_pole_longitude = 170. ;
double time
time:standard _name = "time" ;
time:units = "days since 2000-12-01 00:00" ;
float rlon(rlon) ;
rlon:long_name = "longitude in rotated pole grid" ;
rlon:units = "degrees" ;
rlon:standard_name = "grid_longitude" ;
float rlat(rlat) ;
rlat:long_name = "latitude in rotated pole grid" ;
rlat:units = "degrees" ;
rlat:standard_name = "grid_latitude" ;
float lev(lev) ;
lev:long_name = "pressure level" ;
lev:units = "hPa" ;
float lon(rlat,rlon) ;
lon:long_name = "longitude" ;
lon:units = "degrees_east" ;
float lat(rlat,rlon) ;
lat:long_name = "latitude" ;

66 See https://cfconventions.org for further information

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

lat:units = "degrees_north" ;

Example 5.17. A domain containing cell areas for a spherical geodesic grid.

dimensions:

cell = 2562 ; // number of grid cells

time = 12 ;

nv ==06; // maximum number of cell vertices
variables:

char domain ;
domain:dimensions = "time cell" ;
domain:coordinates = "lon lat" ;
domain:cell _measures = "area: cell_area" ;
domain:long_name = "Domain with cell measures" ;
float lon(cell) ;
lon:long_name = "longitude" ;
lon:units = "degrees_east" ;
lon:bounds = "lon_vertices" ;
float lat(cell) ;
lat:long_name = "latitude" ;
lat:units = "degrees_north" ;
lat:bounds = "lat vertices" ;
float time(time) ;
time:long_name = "time" ;
time:units = "days since 1979-01-01" ;
float cell area(cell) ;
cell_area:long_name = "area of grid cell” ;
cell _area:standard_name = "cell _area" ;
cell _area:units = "m2"
float lon_vertices(cell, nv) ;
float lat_vertices(cell, nv) ;

In this example the data variable PS from the Cell areas for a spherical geodesic grid example
has been replaced by the domain variable domain.

Example 5.18. A domain with no explicit dimensions.

dimensions:

variables:
char domain ;
domain:dimensions = "" ;
domain:coordinates = "t" ;
domain:long_name = "Domain with no explicit dimensions" ;
double t ;
t:standard_name = "time" ;

See https://cfconventions.org for further information

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

t:units = "days since 2021-01-01" ;

Example 5.19. A domain containing a timeseries geometry.

dimensions:
instance = 2 ;
node = 5 ;
time = 4 ;

variables:
char domain ;
domain:dimensions = "instance time" ;
domain:coordinates = "lat lon" ;
domain:grid_mapping = "datum" ;
domain:geometry = "geometry_container" ;
domain:long_name = "Domain with a geometry variable" ;
int time(time) ;
double lat(instance) ;
lat:units = "degrees_north" ;
lat:standard_name = "latitude" ;
lat:nodes = "y" ;
double lon(instance) ;
lon:units = "degrees_east" ;
lon:standard_name = "longitude" ;
lon:nodes = "x" ;
int datum ;
datum:grid_mapping_name = "latitude_longitude" ;
datum:longitude_of_prime_meridian = 0.0 ;
datum:semi_major_axis = 6378137.0 ;
datum:inverse_flattening = 298.257223563 ;
int geometry_container ;
geometry_container:geometry_type = "line" ;
geometry_container:node_count = "node_count" ;
geometry_container:node_coordinates = "x y" ;
int node_count(instance) ;
double x(node) ;
x:units = "degrees_east" ;
x:standard_name = "longitude" ;
x:axis = "X" ;
double y(node) ;
y:units = "degrees_north" ;
y:standard_name = "latitude" ;
y:axis = "Y" ;

In this example the data variable someData from the Timeseries with geometry. example has
been replaced by the domain variable domain.

68 See https://cfconventions.org for further information

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

Example 5.20. A domain containing a timeseries of station data in the indexed ragged array representation.

dimensions:
station = 23 ;
obs = UNLIMITED ;
name_strlen = 23 ;

variables:
char domain ;
domain:dimensions = "obs" ;
domain:coordinates = "time lat lon alt station_name" ;
domain:long_name = "Domain with a discrete sampling geometry" ;
float lon(station) ;
lon:standard_name = "longitude" ;
lon:long_name = "station longitude" ;
lon:units = "degrees_east" ;
float lat(station) ;
lat:standard_name = "latitude" ;
lat:long_name = "station latitude" ;
lat:units = "degrees_north" ;
float alt(station) ;
alt:long_name = "vertical distance above the surface" ;
alt:standard_name = "height" ;
alt:units = "m" ;
alt:positive = "up" ;
alt:axis = "2" ;
char station_name(station, name_strlen) ;
station_name:long_name = "station name" ;
station_name:cf_role = "timeseries_id" ;
int station_info(station) ;
station_info:long_name = "some kind of station info" ;
int stationIndex(obs) ;
stationIndex:long_name = "which station this obs is for" ;
stationIndex:instance_dimension = "station" ;
double time(obs) ;
time:standard name = "time" ;
time:long_name = "time of measurement” ;
time:units = "days since 1970-01-01 00:00:00" ;

attributes:
:featureType = "timeSeries" ;

In this example the data variables humidity and temp from the Timeseries of station data in the
indexed ragged array representation. example have been replaced by the domain variable
domain.

See https://cfconventions.org for further information 69

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

5.9. Mesh Topology Variables

A mesh topology variable defines the geospatial topology of cells arranged in two or three
dimensions in real space but indexed by a single dimension. It explicitly describes the topological
relationships between cells, i.e. spatial relationships which do not depend on the cell locations, via
a mesh of connected nodes. A mesh topology variable may provide the topology for one or more
domains, defined at the nodes, edges, or faces of the mesh. See the Domain topology construct and
Cell connectivity construct descriptions in the CF data model for more details, including on how the
mesh relates to the cells of the domain.

The canonical definitions of mesh topology variables and location index set variables are given
externally by the UGRID conventions [UGRID], but their standardized attributes, many of which are
optional, are listed in Appendix K, Mesh Topology Attributes and Appendix A, Attributes. Some
features of the UGRID conventions [UGRID] are not currently recognized by the CF conventions:
mesh topology volume cells (that are used to describe fully three-dimensional unstructured mesh
topologies); and the "boundary node connectivity" variable (that specifies an index variable
identifying the nodes that define where boundary condtions have been provided).

A data or domain variable may use one of a mesh topology variable’s domains by referencing the
mesh topology variable with the mesh attribute; along with the identity of required domain
provided by the location attribute (see example A two-dimensional UGRID mesh topology variable).

The variables containing the coordinate values for cells indexed by the mesh topology are defined
by the mesh topology variable but are equivalent to one-dimensional auxiliary coordinate
variables, and so may also be provided by the data or domain variable’s coordinates attribute. Note
that the mesh topology variable allows cell bounds to be provided without any cell coordinate
values, via its node_coordinates attribute.

A location index set variable defines a subset of locations of a mesh topology variable, e.g. only
special locations like weirs and gates. It is provided as a space saving device to prevent the need to
redefine parts of an existing mesh topology variable, and as such is logically equivalent to a mesh
topology variable. A data or domain variable references a location index set variable via its
location_index_set attribute.

Example 5.21. A two-dimensional UGRID mesh topology variable

dimensions:
node = 5 ; // Number of mesh nodes
edge = 6 ; // Number of mesh edges
face = 2 ; // Number of mesh faces

two = 2 ; // Number of nodes per edge
four = 4 ; // Maximum number of nodes per face
time = 12 ;

variables:

// Mesh topology variable
integer mesh ;
mesh:cf_role = "mesh_topology" ;
mesh:long_name = "Topology of a 2-d unstructured mesh" ;

70 See https://cfconventions.org for further information

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

mesh:topology_dimension = 2 ;

mesh:node_coordinates = "mesh_node_x mesh_node_y" ;
mesh:edge_node_connectivity = "mesh_edge_nodes" ;
mesh:face_node_connectivity = "mesh_face_nodes" ;

// Mesh node coordinates

double mesh2 node_x(node) ;
mesh_node_x:standard_name = "longitude" ;
mesh_node_x:units = "degrees_east" ;

double mesh2_node_y(node) ;
mesh_node_y:standard_name = "latitude" ;
mesh_node_y:units = "degrees_north" ;

// Mesh connectivity variables
integer mesh_face_nodes(face, four) ;

mesh_face_nodes:long_name = "Maps each face to its 3 or 4 corner nodes" ;
integer mesh_edge_nodes(edge, two) ;

mesh_edge_nodes:1long_name = "Maps each edge to the 2 nodes it connects" ;

// Coordinate variables

float time(time) ;
time:standard_name = "time" ;
time:units = "days since 2004-06-01" ;

// Data at mesh faces

double volume_at_faces(time, face) ;
volume_at_faces:standard_name = "air_density" ;
volume_at_faces:units = "kg m-3" ;
volume _at faces:mesh = "mesh" ;
volume_at faces:location = "face" ;

// Data at mesh edges

double flux_at_edges(time, edge) ;
fluxe_at_edges:standard_name = "northward_wind" ;
fluxe_at_edges:units = "m s-1" ;
fluxe_at_edges:mesh = "mesh"
fluxe_at_edges:location = "edge" ;

// Data at mesh nodes

double height_at_nodes(time, node) ;
height_at_nodes:standard_name = "sea_surface_height_above_geoid" ;
height_at_nodes:units = "m" ;
height_at_nodes:mesh = "mesh" ;
height_at_nodes:location = "node" ;

A two-dimensional UGRID mesh topology variable for the mesh depicted in Figure 1.5, with
data variables defined at face, edge and node elements of the mesh. All optional attributes
have been omitted

See https://cfconventions.org for further information

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

Chapter 6. Labels and Alternative
Coordinates

6.1. Labels

Character strings can be used to provide a name or label for each element of an axis. This is
particularly useful for discrete axes (section 4.5). For instance, if a data variable contains time
series of observational data from a number of observing stations, it may be convenient to provide
the names of the stations as labels for the elements of the station dimension (Section H.2, "Time
Series Data"). There are several other uses for labels in CF. For instance, Northward heat transport
in Atlantic Ocean shows the use of labels to indicate geographic regions.

Character strings labelling the elements of an axis are regarded as string-valued auxiliary
coordinate variables. The coordinates attribute of the data variable names the variable that
contains the string array. An application processing the variables listed in the coordinates attribute
can recognize a string-valued auxiliary coordinate variable because it has a type of char or string.
If the variable has a type of char, the inner dimension (last dimension in CDL terms) is the
maximum length of each string, and the other dimensions are axis dimensions. If an auxiliary
coordinate variable has a type of string and has no dimensions, or has a type of char and has only
one dimension (the maximum length of the string), it is a string-valued scalar coordinate variable
(see Section 5.7, "Scalar Coordinate Variables"). As such, it has the same information content and
can be used in the same contexts as a string-valued auxiliary coordinate variable of a size one
dimension. This is a convenience feature.

6.1.1. Geographic Regions

When data is representative of geographic regions which can be identified by names but which
have complex boundaries that cannot practically be specified using longitude and latitude
boundary coordinates, a labeled axis should be used to identify the regions. We recommend that
the names be chosen from the list of standardized region names whenever possible. To indicate
that the label values are standardized the variable that contains the labels must be given the
standard_name attribute with the value region.

Example 6.1. Northward heat transport in Atlantic Ocean

Suppose we have data representing northward heat transport across a set of zonal slices in the
Atlantic Ocean. Note that the standard names to describe this quantity do not include location
information. That is provided by the latitude coordinate and the labeled axis:

dimensions:
times = 20 ;
lat = 5
bl =1 ;
variables:
float n_heat_transport(time,lat,1bl);
n_heat_transport:units="W";

72 See https://cfconventions.org for further information

https://cfconventions.org/Data/cf-standard-names/docs/standardized-region-names.html
https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

n_heat_transport:coordinates="geo_region";
n_heat_transport:standard_name="northward_ocean_heat_transport";
double time(time) ;
time:long_name = "time" ;
time:units = "days since 1990-1-1 0:0:0" ;
float lat(lat) ;
lat:long_name = "latitude" ;
lat:units = "degrees_north" ;
string geo_region(1bl) ;
geo_region:standard_name="region"
data:
geo_region = "atlantic_ocean" ;
lat = 10., 20., 30., 40., 50. ;

6.1.2. Taxon Names and Identifiers

A taxon is a named level within a biological classification, such as a class, genus and species.
Quantities dependent on taxa have generic standard names containing the phrase
"organisms_in_taxon", and the taxa are identified by auxiliary coordinate variables.

The taxon auxiliary coordinate variables are string-valued. The plain-language name of the taxon
must be contained in a variable with standard_name of biological_taxon_name. A Life Science
Identifier (LSID) may be contained in a variable with standard_name of biological_taxon_lsid. This is
a URN with the syntax "urn:lsid:<Authority>:<Namespace>:<ObjectID>[:<Version>]". This includes
the reference classification in the <Authority> element and these are restricted by the LSID
governance. It is strongly recommended in CF that the authority chosen is World Register of Marine
Species (WoRMS) for oceanographic data and Integrated Taxonomic Information System (ITIS) for
freshwater and terrestrial data. WoRMS LSIDs are built from the WoRMS AphialD taxon identifier
such as "urn:lsid:marinespecies.org:taxname:104464" for AphiaID 104464. This may be converted to
a URL by adding prefixes such as https://www.sid.info/. ITIS LSIDs are built from the ITIS
Taxonomic Serial Number (TSN), such as "urn:lsid:itis.gov:itis_tsn:180543".

The biological_taxon_name auxiliary coordinate variable included for human readability is
mandatory. The biological_taxon_lsid auxliary coordinate variable included for software agent
readability is optional, but strongly recommended. If both are present then each
biological_taxon_name coordinate must exactly match the name resolved from the
biological_taxon_lsid coordinate. If LSIDs are available for some taxa in a dataset then the
biological_taxon_lsid auxiliary coordinate variable should be included and missing data given for
those taxa that do not have an identifier.

Example 6.1.2. Taxon names and identifiers

A skeleton example for taxonomic abundance time series.

dimension:
time = 100 ;
string80 = 80 ;
taxon = 2 ;

See https://cfconventions.org for further information 73

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

variables:
float time(time);
time:standard_name = "time" ;
time:units = "days since 2019-01-01" ;
float abundance(time,taxon) ;
abundance:standard_name =
"number_concentration_of_biological_taxon_in_sea_water" ;
abundance:coordinates = "taxon_lsid taxon_name" ;
char taxon_name(taxon,string80) ;
taxon_name:standard_name = "biological_taxon_name" ;
char taxon_lsid(taxon,string80) ;
taxon_lsid:standard_name = "biological_taxon_lsid" ;
data:
time = // 100 values ;
abundance = // 200 values ;
taxon_name = "Calanus finmarchicus", "Calanus helgolandicus" ;
taxon_lsid = "urn:1sid:marinespecies.org:taxname:104464",
"urn:lsid:marinespecies.org:taxname:104466" ;

6.2. Alternative Coordinates

In some situations a dimension may have alternative sets of coordinates values. Since there can
only be one coordinate variable for the dimension (the variable with the same name as the
dimension), any alternative sets of values have to be stored in auxiliary coordinate variables. For
such alternative coordinate variables, there are no mandatory attributes, but they may have any of
the attributes allowed for coordinate variables.

Example 6.2. Model level numbers

Levels on a vertical axis may be described by both the physical coordinate and the ordinal
model level number.

float xwind(sigma,lat);
xwind:coordinates="model _level";

float sigma(sigma); // physical height coordinate
sigma:long_name="sigma";
sigma:positive="down";

int model_level(sigma); // model level number at each height
model_level:1long_name="model level number";
model_level:positive="up";

74 See https://cfconventions.org for further information

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

Chapter 7. Data Representative of Cells

When gridded data does not represent the point values of a field but instead represents some
characteristic of the field within cells of non-zero size, a complete description of the variable should
include metadata that describes the domain or extent of each cell, and the characteristic of the field
that the cell values represent. The commonest cases are one-dimensional cells along spatiotemporal
axes, for instance cells along a time axis for consecutive months whose values contain monthly
means. The methods presented in Section 7.1, "Cell Boundaries" and Section 7.3, "Cell Methods"
describe cases in which each grid point is associated with a cell consisting of a single one-
dimensional interval, a single two-dimensional polygonal area, or in general a single n-dimensional
volume in the n-dimensional space described by its coordinate variables.

It is possible for a single data value to be the result of an operation whose domain is a disjoint set of
intervals or areas. This is true for many types of climatological statistic; for example, the mean
January temperature for the years 1971-2000 is computed from the 30 individual months of
January, which are a set of discontiguous time-intervals. Climatological statistics are of such
importance that we provide special methods for describing their associated computational domains
in Section 7.4, "Climatological Statistics". As an alternative to n-dimensional volumes with bounds,
we provide Section 7.5, "Geometries", for the case of geospatial applications in which each data
value pertains to a single real-world feature, such as a river, watershed or country, represented by
one or more points, lines or polygons.

7.1. Cell Boundaries

To delimit the cells, the bounds attribute may be added to the appropriate coordinate variable(s).
The value of bounds is the name of the variable that contains the vertices of the cell boundaries. We
refer to this type of variable as a "boundary variable." If cell boundaries are provided, it is
recommended that each gridpoint should lie somewhere within or upon the boundaries of its own
cell.

If cell boundaries are not provided (using the bounds attribute), an application can make no
assumption about the location or extent of the cells. Without a boundary variable, it is unknown
whether adjacent cells are contiguous, separated by a gap, or overlapping. If the data value pertains
to the gridpoint alone, rather than to an interval, area or n-dimensional volume of non-zero size, it
is recommended to indicate this with a cell_methods entry of point (Section 7.3, "Cell Methods"). In
that case, the cell is irrelevant to the data and the bounds are arbitrary. Nonetheless, the bounds
may still be included, for instance because the grid is shared by other data variables that pertain to
cells, or to provide some indication of cells to generic applications for graphical purposes. A cell of
truly zero size can be indicated by giving it coincident boundaries.

A boundary variable must have one more dimension than its associated coordinate or auxiliary
coordinate variable. We refer to the additional dimension as the "vertex dimension". The vertex
dimension must be the most rapidly varying dimension (the last dimension in CDL order), and its
size is the maximum number of cell vertices.

The vertex dimension must be of size two if the associated variable is one-dimensional (Section
7.1.2, "Bounds for one-dimensional coordinate variables"), and of size greater than two if the
associated variable has more than one dimension (Section 7.1.1, "Bounds for horizontal coordinate

See https://cfconventions.org for further information 75

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

variables with four-sided cells"). For grids constructed from cells that do not all have the same
number of sides (e.g., a grid with some rectangular cells and some triangular cells), the vertex
dimension must be at least as large as the maximum number of cell vertices (Section 7.1.3, "Bounds
for coordinate variables with p-sided cells in two spatial dimensions"). For cells with fewer vertices
than the size of vertex dimension, the unneeded elements must appear as the last elements in the
vertex dimension and must be assigned the _FillValue. CF can currently describe boundaries for
cells which have one or two spatial dimensions, but does not provide conventions to describe the
boundaries of cells with three spatial dimensions. Such conventions are under consideration in
[UGRID].

A boundary variable inherits the values of some attributes from its parent coordinate variable. If a
coordinate variable has any of the attributes marked "BI" (for "inherit") in the "Use" column of
Appendix A, Attributes, they are assumed to apply to its bounds variable as well. It is recommended
that BI attributes not be included on a boundary variable. If a BI attribute is included, it must also
be present in the parent variable, and it must exactly match the parent attribute’s data type and
value. A bounds variable may have any of the attributes marked "BO" for ("own") in the "Use"
column of Appendix A, Attributes. These attributes take precedence over any corresponding
attributes of the parent variable. In these cases, the parent variable’s attribute does not apply to the
bounds variable, regardless of whether the latter has its own attribute.

7.1.1. Bounds for one-dimensional coordinate variables

For a one-dimensional coordinate variable of size N, the boundary variable is an array of shape (
N,2). The bounds for cell i are the elements B(i,0) and B(i,1) of the boundary variable B. Element C(i)
of the coordinate variable C should lie between the boundaries of the cell, or upon one of them i.e.
B(i,0) - C()) and B(i,1) - C(i) should not have the same sign, though one of them could be zero (Figure
7.1).

If N > 1, the bounds of each cell must be ordered consistently with the coordinates i.e. B(i,0) < B(i,1)
for all i if C(i) < C(i + 1), and B(i,0) > B(i,1) for all i if C(i) > C(i + 1).

If any two cells are contiguous, their shared boundary must be represented identically in each
instance where it occurs in the boundary variable. This means that in the common case of N non-
overlapping contiguous intervals, N - 1 of the boundaries are duplicated, because they are shared
by adjacent intervals. This representation has the advantage that it is general enough to handle,
without modification, non-contiguous intervals, as well as intervals on an axis using the unlimited
dimension.

Example 7.1. Cells on a time axis

dimensions:
time = 60;
nv = 2; // number of vertices
variables:
float time(time);
time:standard_name = "time";
time:units = "days since 2024-11-8 09:00:00Z7";
time:bounds = "time_bnds";

76 See https://cfconventions.org for further information

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

float time_bnds(time,nv);

The boundary variable time_bnds associates a time point i with the time interval whose
boundaries are time_bnds(i,0) and time_bnds(i,1). The instant time(i) should be contained
within the interval, or be at one end of it. For instance, with i=2 we might have time(2)=10.5,
time_bnds(2,0)=10.0, time_bnds(2,1)=11.0. If the times are increasing e.g. time(3) =11.5>10.5 =
time(2), which implies time(i+1) > time(i) for all i because coordinates must be monotonic,
the bounds must also be increasing for all i, e.g. timebnd(2,1) >= timebnd(2,0). If adjacent
intervals are contiguous, the shared endpoint must be identical. For example, if the interval
i=3 begins at 11.0 days, when interval i=2 ends, the values in timebnd(3,0) and timebnd(2,1)
must be exactly the same.

with:
lonbnd(i,0) <= lonbnd(i,1)
latbnd(j,0) <= latbnd(j,1)

lonbnd(i,0) lonbnd(i,1)

- latbnd(j,1)

latitude
--> Increasing -->

- latbnd(j,0)

longitude

--> increasing -->

Figure 7.1. Order of lonbnd(i,0) and lonbnd(i,1) as well as of 1atbnd(i,0) and latbnd(i,1) in the case of
one-dimensional horizontal coordinate axes. Tuples (lon(i),1at(j)) represent grid cell centers. The four
grid cell vertices are given by (lonbnd(i,0),1atbnd(j,0)), (lonbnd(i,1),1latbnd(j,0)),
(lonbnd(i,1),1atbnd(j,1)) and (lonbnd(i,0),1latbnd(j,1)).

7.1.2. Bounds for horizontal coordinate variables with four-sided cells

There is a common case of a rectangular horizontal grid, with four-sided cells, whose two axes are
not latitude and longitude (e.g. it uses a map projection from Section 5.6, "Horizontal Coordinate
Reference Systems, Grid Mappings, and Projections” or a curvilinear grid, such as the tripolar ocean
grid). In that case, two-dimensional auxiliary coordinate variables in latitude lat(n,m) and
longitude lon(n,m) may be provided as well. Since the sides of the cells do not generally have
constant latitude or longitude, all four vertices must be specified individually. Therefore the
boundary variables for the two-dimensional auxiliary coordinate variables are given in the form
latbnd(n,m,4) and lonbnd(n,m,4), where the trailing index runs over the four vertices of the cells.

Example 7.2. Cells in a non-latitude-longitude horizontal grid

dimensions:
imax = 128;
jmax = 64;
nv = 4;

See https://cfconventions.org for further information 77

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

variables:

float lat(jmax,imax);
lat:long_name = "latitude";
lat:units = "degrees_north";
lat:bounds = "lat _bnds";

float lon(jmax,imax);
lon:1long_name = "longitude";
lon:units = "degrees_east";
lon:bounds = "lon_bnds";

float lat_bnds(jmax,imax,nv);

float lon_bnds(jmax,imax,nv);

The boundary variables lat_bnds and lon_bnds associate a gridpoint (j,i) with the cell
determined by the vertices (lat_bnds(j,i,n),lon_bnds(j,i,n)), n=@,..,3. The gridpoint
location, (1at(j,1i),lon(j,i)), should be contained within this region.

The vertices must be ordered such that, when visiting the vertices in order, the four-sided
perimeter of the cell is traversed anticlockwise on the lon-lat surface as seen from above. If i-j-
upward is a right-handed coordinate system (like lon-lat-upward), this can be arranged as in Figure
7.2. Let us call the side of cell (j, 1) facing cell (j,i-1) the "i-1" side, the side facing cell (j,i+1) the
"i+1" side, and similarly for "j-1" and "j+1". Then we can refer to the vertex formed by sides i-1 and
j-1 as (j-1,i-1). With this notation, the four vertices are indexed as follows: 0=(j-1,i-1), 1=(j-
1,i41), 2=(j+1,i+1), 3=(j+1,1i-1).

,"“\"“~.lc_>nbnd(j,i,3)
! latbnd(j,i,3) 4

bnd(,i,2)
- latbnd(j,i,2)

latitude
--> Increasing -—->

jatbnd(j.i.0) 4
' lonbnd(j,i;

lonbnd(j,i,1)

longitude

--> increasing -->

Figure 7.2. Order of lonbnd(j,1,0) to lonbnd(j,i,3) and of 1atbnd(j,i,0) and latbnd(j,1,3) in the case of
two-dimensional horizontal coordinate axes. Tuples (lon(j,1i),1at(j,1)) represent grid cell centers and
tuples (lonbnd(j,i,n),latbnd(j,i,n)) represent the grid cell vertices

The bounds can be used to decide whether cells are contiguous via the following relationships. In
these equations the variable bnd is used generically to represent either the latitude or longitude
boundary variable.

For @< j<nand @ <i<m,

78 See https://cfconventions.org for further information

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

If cells (j,i) and (j,i+1) are contiguous, then
bnd(j,i,1)=bnd(j,i+1,0)
bnd(j,i,2)=bnd(j,i+1,3)

If cells (j,i) and (j+1,i) are contiguous, then
bnd(j,1,3)=bnd(j+1,1,0) and bnd(j,i,2)=bnd(j+1,1,1)

7.1.3. Bounds for coordinate variables with p-sided cells in two spatial
dimensions

In the general case of a grid composed of polygonal cells in two spatial dimensions with p sides and
vertices, or a mixture of polygons where p is the maximum number of sides and vertices, the grid
could have one, two or more dimensions, depending on how it is organised logically (e.g. as a 1-D
list or a 2-D rectangular arrangement). The boundary variables for the auxiliary coordinate
variables are dimensioned (---,m,p), giving coordinates for the p vertices of each cell, where (---,m)
are the dimensions of the auxiliary coordinate variables. If the cells are in a horizontal plane, the
vertices must be traversed anticlockwise in the lon-lat plane as viewed from above. The starting
vertex is not specified.

The case of a 2-D horizontal coordinate variables with 4-sided cells (Section 7.1.1, "Bounds for
horizontal coordinate variables with four-sided cells") is a particular case, with p=4 for boundary
variables dimensioned (n,m,p), where n and m are horizontal dimensions. See also Section 7.5,
"Geometries” for conventions describing horizontal cells with more complicated geometry and

topology.

7.1.4. Boundaries and Formula Terms

If a parametric coordinate variable with a formula_terms attribute (section 4.3.2) also has a bounds
attribute, its boundary variable must have a formula_terms attribute too. In this case the same terms
would appear in both (as specified in Appendix D), since the transformation from the parametric
coordinate values to physical space is realized through the same formula. For any term that
depends on the vertical dimension, however, the variable names appearing in the formula terms
would differ from those found in the formula_terms attribute of the coordinate variable itself
because the boundary variables for formula terms are two-dimensional while the formula terms
themselves are one-dimensional.

Whenever a formula_terms attribute is attached to a boundary variable, the formula terms may
additionally be identified using a second method: variables appearing in the vertical coordinates'
formula_terms may be declared to be coordinate, scalar coordinate or auxiliary coordinate
variables, and those coordinates may have bounds attributes that identify their boundary variables.
In that case, the bounds attribute of a formula terms variable must be consistent with the
formula_terms attribute of the boundary variable. Software digesting legacy datasets (constructed
prior to version 1.7 of this standard) may have to rely in some cases on the first method of
identifying the formula term variables and in other cases, on the second. Starting from version 1.7,
however, the first method will be sufficient.

See https://cfconventions.org for further information 79

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

Example 7.3. Specifying formula_terms when a parametric coordinate variable has bounds.

float eta(eta) ;
eta:long_name = "eta at full levels" ;
eta:positive = "down" ;
eta:standard_name = " atmosphere_hybrid_sigma_pressure_coordinate" ;
eta:formula_terms = "a: A b: B ps: PS p@: PQ" ;
eta:bounds="eta _bnds" ;
float eta bnds(eta, 2) ;
eta_bnds:formula_terms = "a: A_bnds b: B_bnds ps: PS p@: P@" ; // This
attribute is mandatory
float A(eta) ;
A:long_name = "'a' coefficient for vertical coordinate at full levels" ;
A:units = "Pa" ;
A:bounds = "A_bnds" ; // This attribute is included for the optional second
method
float B(eta) ;
B:long_name = "'b' coefficient for vertical coordinate at full levels" ;
B:units = "1" ;
B:bounds = "B_bnds" ; // This attribute is included for the optional second
method
float A _bnds(eta, 2) ;
float B_bnds(eta, 2) ;
float PS(lat, lon) ;
PS:units = "Pa" ;
float PO ;
PO:units = "Pa" ;
float temp(eta, lat, lon) ;
temp:standard_name = "air_temperature" ;
temp:units = "K";
temp:coordinates = "A B" ; // This attribute is included for the optional
second method

7.2. Cell Measures

For some calculations, information is needed about the size, shape or location of the cells that
cannot be deduced from the coordinates and bounds without special knowledge that a generic
application cannot be expected to have. For instance, in computing the mean of several cell values,
it is often appropriate to "weight" the values by area. When computing an area-mean each grid cell
value is multiplied by the grid-cell area before summing, and then the sum is divided by the sum of
the grid-cell areas. Area weights may also be needed to map data from one grid to another in such a
way as to preserve the area mean of the field. The preservation of area-mean values while
regridding may be essential, for example, when calculating surface heat fluxes in an atmospheric
model with a grid that differs from the ocean model grid to which it is coupled.

In many cases the areas can be calculated from the cell bounds, but there are exceptions. Consider,
for example, a spherical geodesic grid composed of contiguous, roughly hexagonal cells. The

80 See https://cfconventions.org for further information

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

vertices of the cells can be stored in the variable identified by the bounds attribute, but the cell
perimeter is not uniquely defined by its vertices (because the vertices could, for example, be
connected by straight lines, or, on a sphere, by lines following a great circle, or, in general, in some
other way). Thus, given the cell vertices alone, it is generally impossible to calculate the area of a
grid cell. This is why it may be necessary to store the grid-cell areas in addition to the cell vertices.

In other cases, the grid cell-volume might be needed and might not be easily calculated from the
coordinate information. In ocean models, for example, it is not uncommon to find "partial” grid
cells at the bottom of the ocean. In this case, rather than (or in addition to) indicating grid cell area,
it may be necessary to indicate volume.

To indicate extra information about the spatial properties of a variable’s grid cells, a cell_measures
attribute may be defined for a variable. This is a string attribute comprising a list of blank-
separated pairs of words of the form "measure: name". For the moment, "area" and "volume" are the
only defined measures, but others may be supported in future. The "name" is the name of the
variable containing the measure values, which we refer to as a "measure variable". The dimensions
of a measure variable must be the same as or a subset of the dimensions of the variable to which it
is related, but their order is not restricted, and with one exception: If a cell measure variable of a
data variable that has been compressed by gathering (Section 8.2, "Lossless Compression by
Gathering") does not span the compressed dimension, then its dimensions may be any subset of the
data variable’s uncompressed dimensions, i.e. any of the dimensions of the data variable except the
compressed dimension, and any of the dimensions listed by the compress attribute of the
compressed coordinate variable. In the case of area, for example, the field itself might be a function
of longitude, latitude, and time, but the variable containing the area values would only include
longitude and latitude dimensions (and the dimension order could be reversed, although this is not
recommended). The variable must have a units attribute and may have other attributes such as a
standard_name.

For rectangular longitude-latitude grids, the area of grid cells can be calculated from the bounds:
the area of a cell is proportional to the product of the difference in the longitude bounds of the cell
and the difference between the sine of each latitude bound of the cell. In this case supplying grid-
cell areas via the cell_measures attribute is unnecessary because it may be assumed that
applications can perform this calculation, using their own value for the radius of the Earth.

A variable referenced by cell_measures is not required to be present in the file containing the data
variable. If the cell_measures variable is located in another file (an "external file"), rather than in
the file where it is referenced, it must be listed in the external_variables attribute of the
referencing file (Section 2.6.3).

Example 7.4. Cell areas for a spherical geodesic grid

dimensions:

cell = 2562 ; // number of grid cells

time = 12 ;

nv ==06; // maximum number of cell vertices
variables:

float PS(time,cell) ;
PS:units = "Pa" ;
PS:coordinates = "lon lat" ;

See https://cfconventions.org for further information 81

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

PS:cell_measures = "area: cell _area" ;
float lon(cell) ;
lon:long_name = "longitude" ;
lon:units = "degrees_east" ;
lon:bounds="1on_vertices" ;
float lat(cell) ;
lat:long_name = "latitude" ;
lat:units = "degrees_north" ;
lat:bounds="1at _vertices" ;
float time(time) ;
time:long_name = "time" ;
time:units = "days since 1979-01-01 0:0:0" ;
float cell_area(cell) ;
cell_area:long_name = "area of grid cell" ;
cell _area:standard_name="cell _area";
cell_area:units = "m2"
float lon_vertices(cell,nv) ;
float lat_vertices(cell,nv) ;

7.3. Cell Methods

To describe the characteristic of a field that is represented by cell values, we define the cell_methods
attribute of the variable. This is a string attribute comprising a list of blank-separated words of the
form "name: method". Each "name: method" pair indicates that for an axis identified by name, the
cell values representing the field have been determined or derived by the specified method. For
example, if data values have been generated by computing time means, then this could be indicated
with cell_methods="t: mean", assuming here that the name of the time dimension variable is "t".

In the specification of this attribute, name can be a dimension of the variable, a scalar coordinate
variable, a valid standard name, or the word "area". (See Section 7.3.4, "Cell methods when there
are no coordinates" concerning the use of standard names in cell_methods.) The values of method
should be selected from the list in Appendix E, Cell Methods, which includes point, sum, mean, among
others. Case is not significant in the method name. Some methods (e.g., variance) imply a change of
units of the variable, as is indicated in Appendix E, Cell Methods.

It must be remembered that the method applies only to the axis designated in cell_methods by
name, and different methods may apply to other axes. If, for instance, a precipitation value in a
longitude-latitude cell is given the method maximum for these axes, it means that it is the maximum
within these spatial cells, and does not imply that it is also the maximum in time. Furthermore, it
should be noted that if any method other than "point" is specified for a given axis, then bounds
should also be provided for that axis (except for the relatively rare exceptions described in Section
7.3.4, "Cell methods when there are no coordinates").

The default interpretation for variables that do not have the cell_methods attribute specified
depends on whether the quantity is extensive (which depends on the size of the cell) or intensive
(which does not). Suppose, for example, the quantities "accumulated precipitation" and
"precipitation rate" each have a time axis. A variable representing accumulated precipitation is
extensive in time because it depends on the length of the time interval over which it is

82 See https://cfconventions.org for further information

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

accumulated. For correct interpretation, it therefore requires a time interval to be completely
specified via a boundary variable (i.e., via a bounds attribute for the time axis). In this case the
default interpretation is that the cell method is a sum over the specified time interval. This can be
(optionally) indicated explicitly by setting the cell method to sum. A precipitation rate on the other
hand is intensive in time and could equally well represent either an instantaneous value or a mean
value over the time interval specified by the cell. In this case the default interpretation for the
quantity would be "instantaneous" (which, optionally, can be indicated explicitly by setting the cell
method to point). More often, however, cell values for intensive quantities are means, and this
should be indicated explicitly by setting the cell method to mean and specifying the cell bounds.

Because the default interpretation for an intensive quantity differs from that of an extensive
quantity and because this distinction may not be understood by some users of the data, it is
recommended that every data variable include for each of its dimensions and each of its scalar
coordinate variables the cell_methods information of interest (unless this information would not be
meaningful). It is especially recommended that cell_methods be explicitly specified for each spatio-
temporal dimension and each spatio-temporal scalar coordinate variable.

Example 7.5. Methods applied to a timeseries

Consider 12-hourly timeseries of pressure, temperature and precipitation from a number of
stations, where pressure is measured instantaneously, maximum temperature for the
preceding 12 hours is recorded, and precipitation is accumulated in a rain gauge. For a period
of 48 hours from 6 a.m. on 19 April 1998, the data is structured as follows:

dimensions:
time = UNLIMITED; // (5 currently)
station = 10;
nv = 2;
variables:
float pressure(time,station);
pressure:long_name = "pressure”;
pressure:units = "kPa";
pressure:cell_methods = "time: point";
float maxtemp(time,station);
maxtemp:long_name = "temperature";
maxtemp:units = "K";
maxtemp:cell_methods = "time: maximum";
float ppn(time,station);
ppn:long_name = "depth of water-equivalent precipitation”;
ppn:units = "mm";
ppn:cell_methods = "time: sum";
double time(time);
time:long_name = "time";
time:units = "h since 1998-4-19 6:0:0 7";
time:bounds = "time_bnds";
double time_bnds(time,nv);
data:
time = 0., 12., 24., 36., 48.;
time_bnds = -12.,0., 0.,12., 12.,24., 24.,36., 36.,48.;

See https://cfconventions.org for further information 83

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

Note that in this example the time axis values coincide with the end of each interval. It is
sometimes desirable, however, to use the midpoint of intervals as coordinate values for
variables that are representative of an interval. An application may simply obtain the
midpoint values by making use of the boundary data in time_bnds.

7.3.1. Statistics for more than one axis

If more than one cell method is to be indicated, they should be arranged in the order they were
applied. The left-most operation is assumed to have been applied first. Suppose, for example, that
within each grid cell a quantity varies in both longitude and time and that these dimensions are
named "lon" and "time", respectively. Then values representing the time-average of the zonal
maximum are labeled cell_methods="1on: maximum time: mean" (i.e. find the largest value at each
instant of time over all longitudes, then average these maxima over time); values of the zonal
maximum of time-averages are labeled cell_methods="time: mean lon: maximum". If the methods
could have been applied in any order without affecting the outcome, they may be put in any order
in the cell_methods attribute.

If a data value is representative of variation over a combination of axes, a single method should be
prefixed by the names of all the dimensions involved (listed in any order, since in this case the
order must be immaterial). Dimensions should be grouped in this way only if there is an essential
difference from treating the dimensions individually. For instance, the standard deviation of
topographic height within a longitude-latitude gridbox could have cell_methods="1at: 1lon:
standard_deviation". (Note also, that in accordance with the recommendation of the following
paragraph, this could be equivalently and preferably indicated by cell_methods="area:
standard_deviation".) This is not the same as cell _methods="lon: standard deviation 1lat:
standard_deviation", which would mean finding the standard deviation along each parallel of
latitude within the zonal extent of the gridbox, and then the standard deviation of these values over
latitude.

To indicate variation over horizontal area, it is recommended that instead of specifying the
combination of horizontal dimensions, the special string "area" be used. The common case of an
area-mean can thus be indicated by cell_methods="area: mean" (rather than, for example, "lon: 1lat:
mean"). The horizontal coordinate variables to which "area" refers are in this case not explicitly
indicated in cell_methods but can be identified, if necessary, from attributes attached to the
coordinate variables, scalar coordinate variables, or auxiliary coordinate variables, as described in
Chapter 4, Coordinate Types.

7.3.2. Recording the spacing of the original data and other information

To indicate more precisely how the cell method was applied, extra information may be included in
parentheses () at the end of the word list describing the method, after the operation and any
where, over and within phrases. This information includes standardized and non-standardized parts.
Currently the only standardized information is to provide the typical interval between the original
data values to which the method was applied, in the situation where the present data values are
statistically representative of original data values which had a finer spacing. The syntax is (
interval: value unit), where value is a numerical value and unit is a string that can be recognized by
UNIDATA’s UDUNITS package [UDUNITS]. The unit will usually be dimensionally equivalent to the
unit of the corresponding dimension, but this is not required (which allows, for example, the

84 See https://cfconventions.org for further information

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

interval for a standard deviation calculated from points evenly spaced in distance along a parallel
to be reported in units of length even if the zonal coordinate of the cells is given in degrees).
Recording the original interval is particularly important for standard deviations. For example, the
standard deviation of daily values could be indicated by cell_methods="time: standard_deviation
(interval: 1 day)" and of annual values by cell_methods="time: standard_deviation (interval: 1
year)".

If the cell method applies to a combination of axes, they may have a common original interval e.g.
cell_methods="lat: 1lon: standard_deviation (interval: 10 km)". Alternatively, they may have
separate intervals, which are matched to the names of axes by position e.g. cell_methods="1at: lon:
standard_deviation (interval: 0.1 degree_N interval: 0.2 degree_E)", in which 0.1 degree applies
to latitude and 0.2 degree to longitude.

If there is both standardized and non-standardized information, the non-standardized follows the
standardized information and the keyword comment:. If there is no standardized information, the
keyword comment: should be omitted. For instance, an area-weighted mean over latitude could be
indicated as lat: mean (area-weighted) or lat: mean (interval: 1 degree_north comment: area-
weighted).

A dimension of size one may be the result of "collapsing" an axis by some statistical operation, for
instance by calculating a variance from time series data. We strongly recommend that dimensions
of size one be retained (or scalar coordinate variables be defined) to enable documentation of the
method (through the cell_methods attribute) and its domain (through the bounds attribute).

Example 7.6. Surface air temperature variance

The variance of the diurnal cycle on 1 January 1990 has been calculated from hourly
instantaneous surface air temperature measurements. The time dimension of size one has
been retained.

dimensions:
1at=90;
1lon=180;
time=1;
nv=2;
variables:
float TS var(time,lat,lon);
TS_var:long_name="surface air temperature variance"
TS var:units="K2";
TS_var:cell_methods="time: variance (interval: 1 hr comment: sampled
instantaneously)";
float time(time);
time:units="days since 1990-01-01 00:00:00 7";
time:bounds="time bnds";
float time_bnds(time,nv);
data:
time=.5;
time_bnds=0.,1.;

See https://cfconventions.org for further information 85

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

Notice that a parenthesized comment in the cell_methods attribute provides the nature of the
samples used to calculate the variance.

7.3.3. Statistics applying to portions of cells

By default, the statistical method indicated by cell_methods is assumed to have been evaluated over
the entire horizontal area of the cell. Sometimes, however, it is useful to limit consideration to only
a portion of a cell (e.g. a mean over the sea-ice area). Cell portions are referred to by means of
standardised area_type strings, maintained in the area-type table, using one of two conventions.

The first convention is a method that can be used for the common case of a single area-type. In this
case, the cell_methods attribute may include a string of the form "name: method where type". Here
name could, for example, be area and type may be any of the standardised area_type strings. As an
example, if the method were mean and the area_type were sea_ice, then the data would represent a
mean over only the sea ice portion of the grid cell. If the data writer expects type to be interpreted
as one of the standard area_type strings, then none of the variables in the netCDF file should be
given a name identical to that of the string (because the second convention, described in the next
paragraph, takes precedence).

The second convention is the more general. In this case, the cell_methods entry is of the form
"name: method where typevar". Here typevar is a string-valued auxiliary coordinate variable or
string-valued scalar coordinate variable (see Section 6.1, "Labels") with a standard_name of area_type.
The variable typevar contains the name(s) of the selected portion(s) of the grid cell to which the
method is applied. These name(s) must be a subset of the standardised area_type strings. This
convention can accommodate cases in which a method is applied to more than one area type and
the result is stored in a single data variable (with a dimension which ranges across the various area
types). It provides a convenient way to store output from land surface models, for example, since
they deal with many area types within each surface gridbox (e.g., vegetation, bare_ground, snow, etc.).

Example 7.7. Mean surface temperature over land and sensible heat flux averaged separately over land and
sea.

dimensions:
lat=73;
lon=96;
maxlen=20;
1s=2;
variables:
float surface_temperature(lat,lon);
surface_temperature:cell_methods="area: mean where land";
float surface_upward_sensible_heat_flux(ls,1lat,lon);
surface_upward_sensible_heat_flux:coordinates="1land_sea";
surface_upward_sensible_heat_flux:cell_methods="area: mean where land_sea";
char land_sea(ls,maxlen);
land_sea:standard_name="area_type";
data:
land_sea="1and","sea";

86 See https://cfconventions.org for further information

https://cfconventions.org/Data/area-type-table/current/build/area-type-table.html
https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

If the method is mean, various ways of calculating the mean can be distinguished in the
cell_methods attribute with a string of the form "mean where typel [over type2]". Here, typel
can be any of the possibilities allowed for typevar or type (as specified in the two paragraphs
preceding above Example). The same options apply to type2, except it is not allowed to be the
name of an auxiliary coordinate variable with a dimension greater than one (ignoring the
possible dimension accommodating the maximum string length). A cell_methods attribute with
a string of the form "mean where typel over type2" indicates the mean is calculated by
summing over the typel portion of the cell and dividing by the area of the type2 portion. In
particular, a cell_methods string of the form "mean where all_area_types over type2" indicates
the mean is calculated by summing over all types of area within the cell and dividing by the
area of the type2 portion. (Note that all_area_types is one of the valid strings permitted for a
variable with the standard_name area_type.) If "over type2" is omitted, the mean is calculated by
summing over the typel portion of the cell and dividing by the area of this portion.

Example 7.8. Thickness of sea-ice and snow on sea-ice averaged over sea area.

variables:

float sea_ice_thickness(lat,lon);
sea_ice_thickness:cell methods="area: mean where sea ice over sea";
sea_ice_thickness:standard _name="sea_ice_thickness";
sea_ice_thickness:units="m";

float snow_thickness(lat,lon);
snow_thickness:cell_methods="area: mean where sea_ice over sea";
snow_thickness:standard name="1we thickness of surface_snow_amount";

snow_thickness:units="m";

In the case of sea-ice thickness, the phrase “where sea_ice” could be replaced by “where
all_area_types” without changing the meaning since the integral of sea-ice thickness over all
area types is obviously the same as the integral over the sea-ice area only. In the case of snow
thickness, “where sea_ice” differs from “where all_area_types” because “where sea_ice”
excludes snow on land from the average.

7.3.4. Cell methods when there are no coordinates

To provide an indication that a particular cell method is relevant to the data without having to
provide a precise description of the corresponding cell, the "name" that appears in a "name:
method" pair may be an appropriate standard_name (which identifies the dimension) or the string,
"area" (rather than the name of a scalar coordinate variable or a dimension with a coordinate
variable). This convention cannot be used, however, if the name of a dimension or scalar
coordinate variable is identical to name. There are two situations where this convention is useful.

First, it allows one to provide some indication of the method when the cell coordinate range cannot
be precisely defined. For example, a climatological mean might be based on any data that exists,
and, in general, the data might not be available over the same time periods everywhere. In this
case, the time range would not be well defined (because it would vary, depending on location), and
it could not be precisely specified through a time dimension’s bounds. Nevertheless, useful

See https://cfconventions.org for further information 87

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

information can be conveyed by a cell_methods entry of "time: mean" (where time, it should be
noted, is a valid standard_name). (As required by this convention, it is assumed here that for the data
referred to by this cell_methods attribute, "time" is not a dimension or coordinate variable.)

Second, for a few special dimensions, this convention allows one to indicate (without explicitly
defining the coordinates) that the method applies to the domain covering the entire permitted
range of those dimensions. This is allowed only for longitude, latitude, and area (indicating a
combination of horizontal coordinates). For longitude, the domain is indicated according to this
provision by the string "longitude" (rather than the name of a longitude coordinate variable), and
this implies that the method applies to all possible longitudes (i.e., from OE to 360E). For latitude, the
string "latitude" is used and implies the method applies to all possible latitudes (i.e., from 90S to
90N). For area, the string "area" is used and implies the method applies to the whole world.

In the second case if, in addition, the data variable has a dimension with a corresponding labeled
axis that specifies a geographic region (Section 6.1.1, "Geographic Regions"), the implied range of
longitude and latitude is the valid range for each specified region, or in the case of area the domain
is the geographic region. For example, there could be a cell_methods entry of "longitude: mean",
where longitude is not the name of a dimension or coordinate variable (but is one of the special
cases given above). That would indicate a mean over all longitudes. Note, however, that if in
addition the data variable had a scalar coordinate variable with a standard_name of region and a
value of atlantic_ocean, it would indicate a mean over longitudes that lie within the Atlantic Ocean,
not all longitudes.

We recommend that whenever possible, cell bounds should be supplied by giving the variable a
dimension of size one and attaching bounds to the associated coordinate variable.

7.4. Climatological Statistics

Climatological statistics may be derived from corresponding portions of the annual cycle in a set of
years, e.g., the average January temperatures in the climatology of 1961-1990, where the values are
derived by averaging the 30 Januarys from the separate years. Portions of the climatological cycle
are specified by references to dates within the calendar year. However, a calendar year is not a
well-defined unit of time, because it differs between leap years and other years, and among
calendars. Nonetheless for practical purposes we wish to compare statistics for months or seasons
from different calendars, and to make climatologies from a mixture of leap years and other years.
Hence we provide special conventions for indicating dates within the climatological year.
Climatological statistics may also be derived from corresponding portions of a range of days, for
instance the average temperature for each hour of the average day in April 1997. In addition the
two concepts may be used at once, for instance to indicate not April 1997, but the average April of
the five years 1995-1999.

Climatological variables have a climatological time axis. Like an ordinary time axis, a climatological
time axis may have a dimension of unity (for example, a variable containing the January average
temperatures for 1961-1990), but often it will have several elements (for example, a climatological
time axis with a dimension of 12 for the climatological average temperatures in each month for
1961-1990, a dimension of 3 for the January mean temperatures for the three decades 1961-1970,
1971-1980, 1981-1990, or a dimension of 24 for the hours of an average day). Intervals of
climatological time are conceptually different from ordinary time intervals; a given interval of

88 See https://cfconventions.org for further information

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

climatological time represents a set of subintervals which are not necessarily contiguous. To
indicate this difference, a climatological time coordinate variable does not have a bounds attribute,
instead it has a climatology attribute which names the climatological boundary variable. The
climatological boundary variable must have dimensions (n,2), n being the dimension of the
climatological time axis. The rules and recommendations for attributes of the climatological
boundary variable are the same as those for boundary variables in general, as described in Section
7.1, "Cell Boundaries". Using the units and calendar of the time coordinate variable, element (i,0) of
the climatology boundary variable specifies the beginning of the first subinterval and element (i,1)
the end of the last subinterval used to evaluate the climatological statistics with index i in the time
dimension. The time coordinates should be values that are representative of the climatological time
intervals, such that an application which does not recognise climatological time will nonetheless be
able to make a reasonable interpretation.

For compatibility with the COARDS standard, a climatological time coordinate in the default
standard and julian calendars may be indicated by setting the datetime reference string in the time
coordinate’s units attribute to midnight at O degrees_east on 1 January in year 0 (i.e., since 0-1-1).
This convention is deprecated because it does not provide any information about the intervals used
to compute the climatology, and there may be inconsistencies among software packages in the
interpretation of the time coordinates with a reference time of year 0. Use of year 0 for this purpose
is impossible in all other calendars, because year 0 is a valid year.

A climatological axis may use different statistical methods to represent variation among years,
within years and within days. For example, the average January temperature in a climatology is
obtained by averaging both within years and over years. This is different from the average January-
maximum temperature and the maximum January-average temperature. For the former, we first
calculate the maximum temperature in each January, then average these maxima; for the latter, we
first calculate the average temperature in each January, then find the largest one. As usual, the
statistical operations are recorded in the cell_methods attribute, which may have two or three
entries for the climatological time dimension.

Valid values of the cell_methods attribute must be in one of the forms from the following list. The
intervals over which various statistical methods are applied are determined by decomposing the
date and time specifications of the climatological time bounds of a cell, as recorded in the variable
named by the climatology attribute. (The date and time specifications must be calculated from the
time coordinates expressed in units of "time interval since reference date and time".) In the
descriptions that follow we use the abbreviations y, m, d, H, M, and S for year, month, day, hour,
minute, and second respectively. The suffix 0 indicates the earlier bound and 1 the latter.

time: method1 within years time: method2 over years

method1 is applied to the time intervals (mdHMSO-mdHMS1) within individual years and
method?2 is applied over the range of years (y0-y1).

time: method1 within days time: method2 over days

method1 is applied to the time intervals (HMS0-HMS1) within individual days and method2 is
applied over the days in the interval (ymdO-ymd1).

time: method1 within days time: method2 over days time: method3 over years

method1 is applied to the time intervals (HMS0-HMS1) within individual days and method2 is

See https://cfconventions.org for further information 89

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

applied over the days in the interval (md0-md1), and method3 is applied over the range of years
(y0-y1).

The methods which can be specified are those listed in Appendix E, Cell Methods and each entry in
the cell_methods attribute may also, as usual, contain non-standardised information in parentheses
after the method. For instance, a mean over ENSO years might be indicated by "time: mean over
years (ENSO years)".

When considering intervals within years, if the earlier climatological time bound is later in the year
than the later climatological time bound, it implies that the time intervals for the individual years
run from each year across January 1 into the next year e.g. DJF intervals run from December 1 0:00
to March 1 0:00. Analogous situations arise for daily intervals running across midnight from one
day to the next.

When considering intervals within days, if the earlier time of day is equal to the later time of day,
then the method is applied to a full 24 hour day.

We have tried to make the examples in this section easier to understand by translating all time
coordinate values to date and time formats. This is not currently valid CDL syntax.

Example 7.9. Climatological seasons

This example shows the metadata for the average seasonal-minimum temperature for the four
standard climatological seasons MAM JJA SON DJF, made from data for March 1960 to
February 1991.

dimensions:
time=4;
nv=2;
variables:
float temperature(time,lat,lon);
temperature:long_name="surface air temperature";
temperature:cell_methods="time: minimum within years time: mean over years";
temperature:units="K";
double time(time);
time:climatology="climatology_bounds";
time:units="days since 1960-1-1";
double climatology_bounds(time,nv);
data: // time coordinates translated to datetime format
time="1960-4-16", "1960-7-16", "1960-10-16", "1961-1-16" ;
climatology_bounds="1960-3-1", "1990-6-1",
"1960-6-1", "1990-9-1",
"1960-9-1", "1990-12-1",
"1960-12-1", "1991-3-1" ;

Example 7.10. Decadal averages for January

Average January precipitation totals are given for each of the decades 1961-1970, 1971-1980,

90 See https://cfconventions.org for further information

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

1981-1990.

dimensions:
time=3;
nv=2;
variables:
float precipitation(time,lat,lon);
precipitation:long_name="precipitation amount";
precipitation:cell_methods="time: sum within years time: mean over years";
precipitation:units="kg m-2";
double time(time);
time:climatology="climatology_bounds";
time:units="days since 1901-1-1";
double climatology_bounds(time,nv);
data: // time coordinates translated to datetime format
time="1965-1-15", "1975-1-15", "1985-1-15" ;
climatology_bounds="1961-1-1", "1970-2-1",
"1971-1-1", "1980-2-1",
"1981-1-1", "1990-2-1" ;

Example 7.11. Temperature for each hour of the average day

Hourly average temperatures are given for April 1997.

dimensions:
time=24;
nv=2;
variables:
float temperature(time,lat,lon);
temperature:long_name="surface air temperature";
temperature:cell_methods="time: mean within days time: mean over days";
temperature:units="K";
double time(time);
time:climatology="climatology_bounds";
time:units="hours since 1997-4-1";
double climatology_bounds(time,nv);
data: // time coordinates translated to datetime format
time="1997-4-1 0:30", "1997-4-1 1:30", ... "1997-4-1 23:30" ;
climatology_bounds="1997-4-1 0:00", "1997-4-30 1:00",
"1997-4-1 1:00", "1997-4-30 2:00",

"1997-4-1 23:00", "1997-5-1 0:00" ;

Example 7.12. Extreme statistics and spell-lengths

Number of frost days during NH winter 2007-2008, and maximum length of spells of
consecutive frost days. A "frost day" is defined as one during which the minimum temperature

See https://cfconventions.org for further information

https://cfconventions.org

NetCDF Climate and Forecast (CF) Metadata Conventions - 1.13 draft

falls below freezing point (0 degC). This is described as a climatological statistic, in which the
minimum temperature is first calculated within each day, and then the number of days or spell
lengths meeting the specified condition are evaluated. In this operation, the standard name is
also changed; the original data are air_temperature.

variables:

float n1(lat,lon);
n1:standard_name="number_of_days_with_air_temperature_below_threshold";
n1:coordinates="threshold time";
n1:cell_methods="time: minimum within days time: sum over days";

float n2(lat,lon);
n2:standard_name="spell_length_of_days_with_air_temperature_below_threshold";
n2:coordinates="threshold time";
n2:cell_methods="time: minimum within days time: maximum over days";

float threshold;
threshold:standard_name="air_temperature";
threshold:units="degC";

double time;
time:climatology="climatology_bounds";
time:units="days since 2000-6-1";

double climatology_bounds(time,nv);

data: // time coordinates translated to datetime format

time="2008-1-16 6:00";

climatology_bounds="2007-12-1 6:00", "2008-3-1 6:00";

threshold=0.;

Example 7.13. Temperature for each hour of the typical climatological day

This is a modified version of the previous example, "Temperature for each hour of the average
day". It now applies to April from a 1961-1990 climatology.

variables:
float temperature(time,lat,lon);
temperature:long_name="surface air temperature";
temperature:cell_methods="time: mean within days time: mean over days time:
mean ov