

Linked Data breakout session

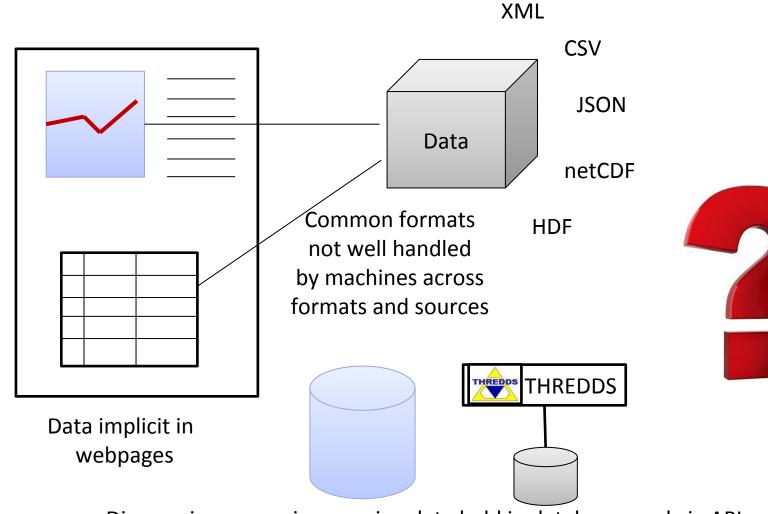
Jonathan Yu, Mark Hedley CSIRO and UK Met Office 25 May 2016 | EarthCube netCDF-CF Workshop

Session agenda

- 1. Context + Purpose
- 2. What is Linked Data? (aka. web of data)
- 3. How is it relevant for netCDF and CF conventions? Benefits?
- 4. Work done to date
- 5. Discuss its value for this community (and broader) and draft use cases
- 6. Draft a plan for activities to engineer prototype(s), test and validate against use cases

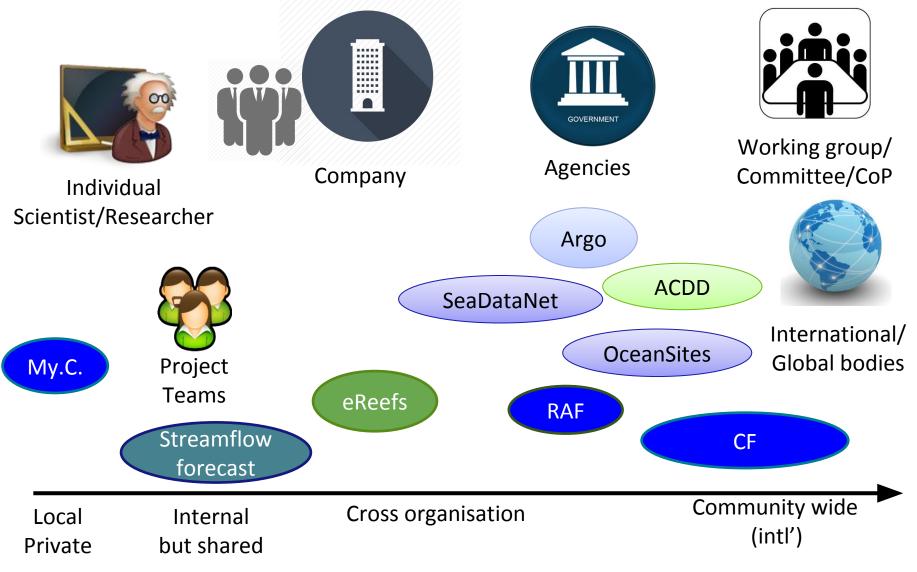
We're not data poor

"90% of the world's data has been produced over the last two years"



Problem

Users - find the right data, access, use it, (cite it?) Data providers – collect data, describe, publish, (update)


Problem

Discovering, accessing, parsing data held in databases and via APIs

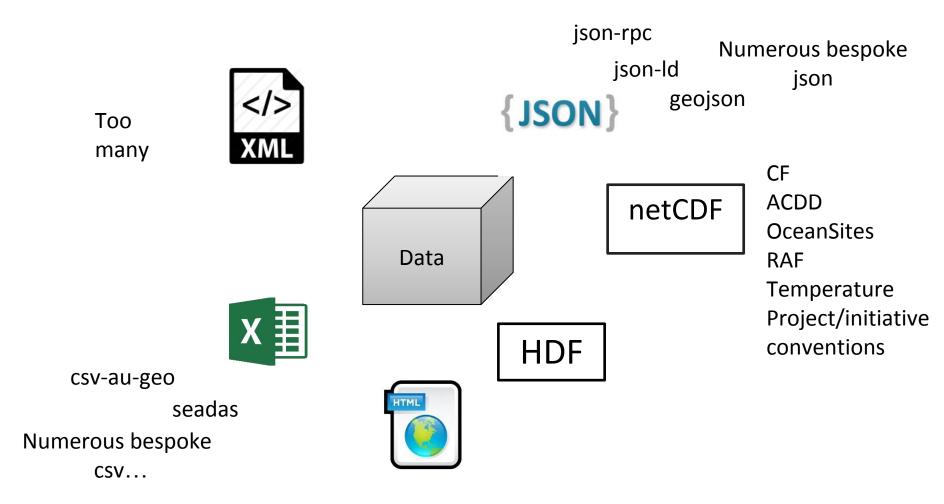
netCDF conventions – level of agreement

Challenges with conventions

Keeping up to date/Updating them/Need something now

Suitability – which one?

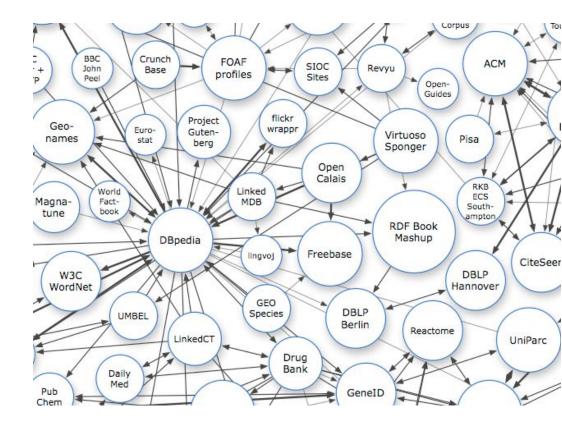
Validation – have I done the right thing?


Compatibility between versions

Cost/Benefits of adopting conventions – why should I?

Tooling – help me adopt the convention? Make data useful...

netCDF not alone in these challenges

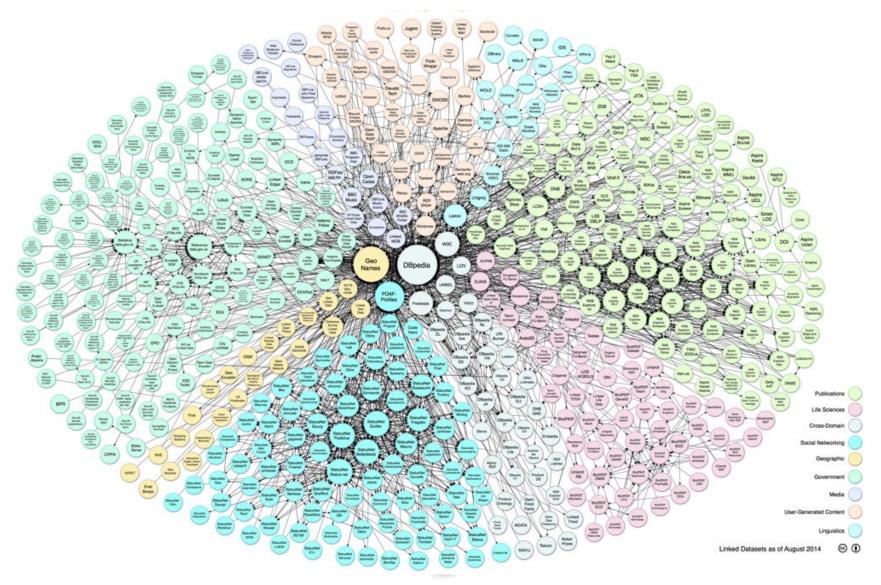

Linked Data / Web of Data

Method to connect related data and semantics using web links (HTTP URIs)

Data is self-describing

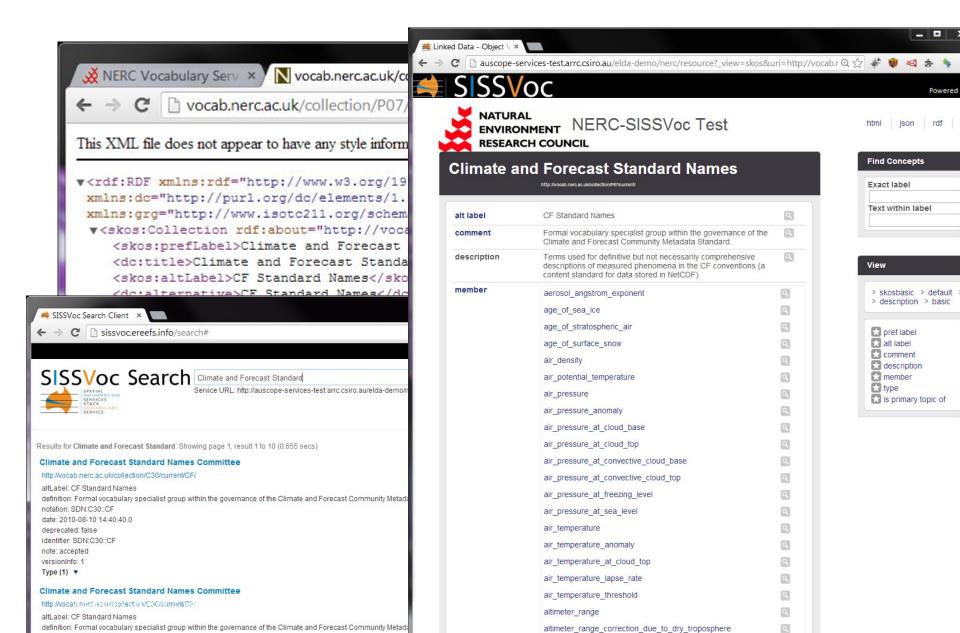
Standardised – HTTP + RDF

Applications can then lookup embedded web links to get more info, find more connections, and infer new insights from the data



Linked Data principles

- 1. Use URIs as names for things.
- 2. Use HTTP URIs, so that people can look up those names.
- 3. When someone looks up a URI, provide useful information, using the standards (RDF, SPARQL).
- 4. Include links to other URIs, so that they can discover more things.


Linked Open Data Cloud

http://lod-cloud.net/

95 Datasets 295 Datasets 570 Datasets

Science/Domain vocabularies as Linked Data

stable

Core metadata

Reg metadata

All properties

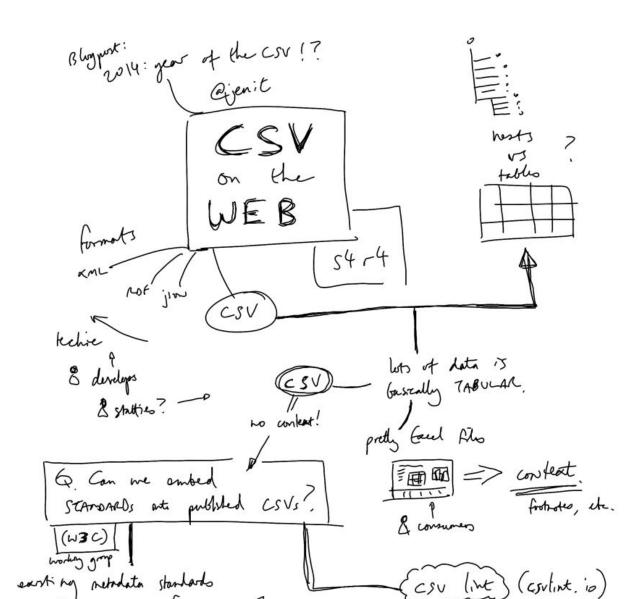
Send comment

Download

Register: observable properties

URI: http://registry.it.csiro.au/def/environment/property

A collection of observable properties. This vocabulary defines terms for observed properties originally used for groundwater, surface water and marine water quality observations. Most PropertyKinds are associated with a Species object via the objectOfInterest property or a real-world Feature via the featureOfInterest property. The sub-class of PropertyKinds that can be measured are ScaledQuantityKinds, which have appropriate units of measure (qudt:unit property). This water quality ontology re-uses the Quantities, Units, Dimensions, Data Types (QUDT) ontology which is developed by TopQuadrant and NASA.

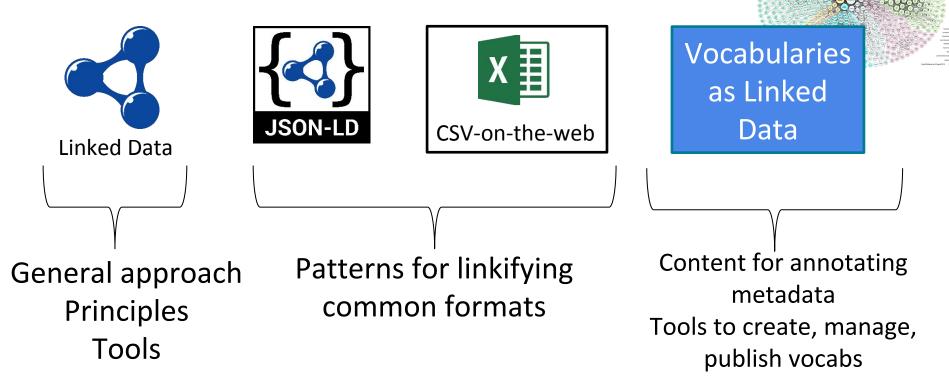

Contents (tree view)

Chemistry observable properties A collection of observable chemistry properties	stable
If form observable properties A collection of observable organism properties	stable
• major element observable properties A collection of observable major elements as specified by Australia	stable
• minor or trace element observable properties A collection of observable minor trace elements as specified by Aus	stable
nutrient observable properties A collection of observable nutrients	stable
ammonia and ammonium as NH4 concentration ammonia and ammonium as NH4 concentration	stable
ammonia and ammonium as N concentration ammonia and ammonium as N concentration	stable
ammonia and ammonium concentration ammonia and ammonium concentration	stable
ammonia as N concentration ammonia as N concentration	stable
ammonia concentration ammonia concentration	stable
ammonium (NH4) concentration ammonium (NH4) concentration	stable
nitrate N concentration nitrate N concentration	stable
nitrate and nitrite N concentration nitrate and nitrite N concentration	stable
nitrite N concentration nitrite N concentration	stable
nitrogen concentration nitrogen concentration	stable
nutrient concentration nutrient concentration	stable

JSON-LD

```
"name": "John Lennon",
                                                          JSON-LD
 "born": "1940-10-09",
                                                          Decorators
"spouse":
"http://dbpedia.org/resource/Cynthia Lennon"
          "@context": "http://json-ld.org/contexts/person.jsonld",
          "@id": "http://dbpedia.org/resource/John_Lennon",
          "name": "John Lennon",
          "born": "1940-10-09",
          "spouse": "http://dbpedia.org/resource/Cynthia_Lennon"
```

CSV-on-the-web


Linked data for CSV tabular data

Add context to tables via metadata file

Use cases: documentation, validation, transformation (e.g. RDF, JSON, XML...), annotate semantics, enhanced discovery

How is all this Linked Data stuff relevant for netCDF and CF conventions?

Have all the building blocks to enhance netCDF(-CF)!

'linkify' netCDF!

5 stars of Linked Open Data

- make your stuff available on the web (whatever format)
- make it available as structured data (e.g. excel instead of image scan of a table)
- *** non-proprietary format (e.g. csv instead of excel)

netCDF(-CF) online

**** use URLs to identify things, so that people can point at your stuff
 **** link your data to other people's data to provide context
 * provide context

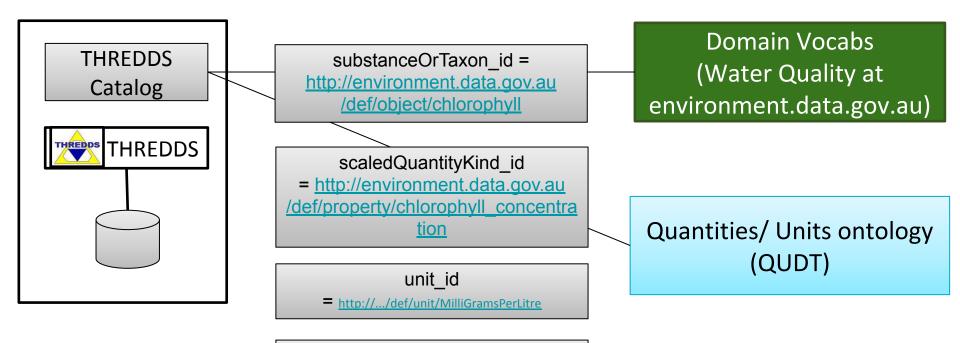
Benefits of linkifying netCDF(-CF)

1. Improve discoverability and reduce ambiguity

- link to vocabularies to add context
- easier to support community profiles and validation
- 2. Improve data integration
- 3. Potential to translate netCDF to other formats
- 4. Potentially ease metadata generation
- 5. Easier to build applications

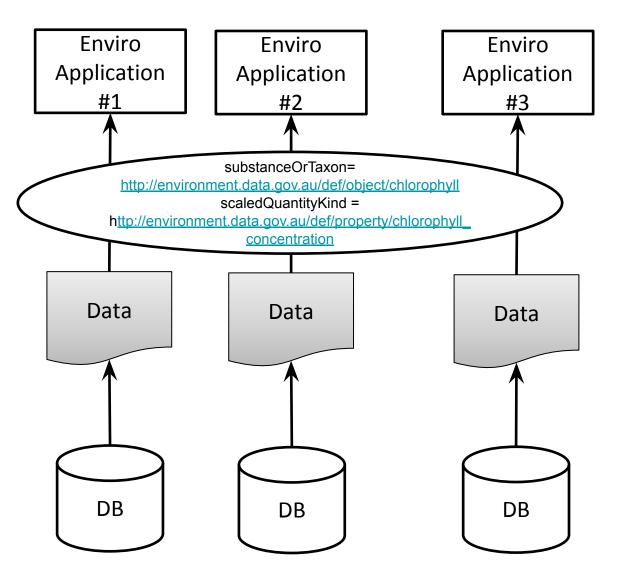
Increased discoverability -> More usage -> Greater impact

Current examples / thought exercises


1. Injecting vocabulary URIs in netCDF headers using special attr

- eReefs/Observable property model convention
- SeaDataNet
- 'Smuggling' semantics into flags
- 2. netCDF-LD
- 3. Binary-array-LD (BALD)

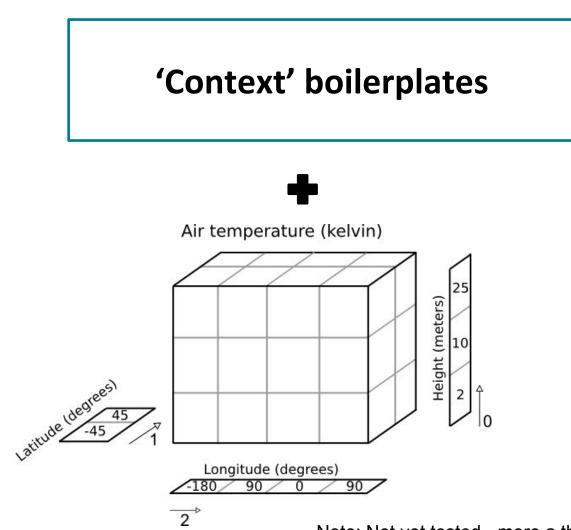
#1: Injecting vocabulary URIs in netCDF headers using special attributes


eReefs / Observed Properties model conventions

Allows for harmonised access to those binding to conventions

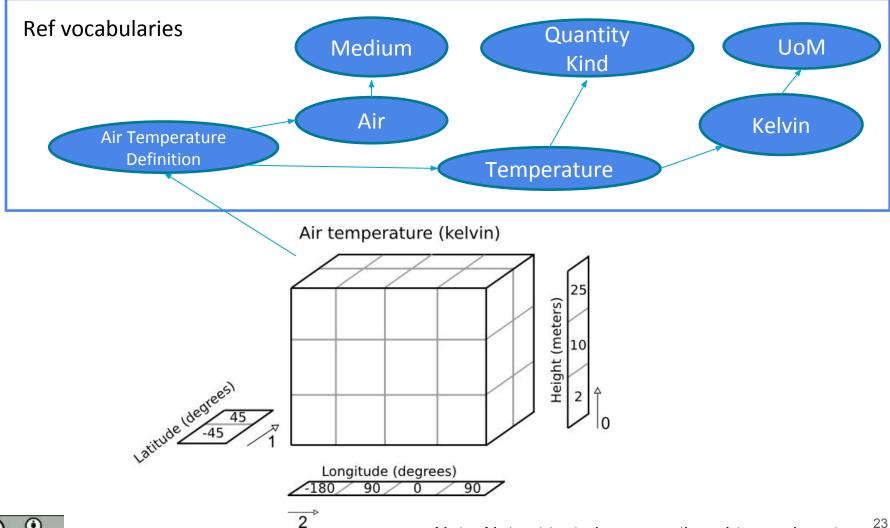
Yu, J., Simons, B. A., Car, N. J., & Cox, S. J. (2014). Enhancing water quality data service discovery and access using standard vocabularies. Hydroinformatics conference. New York.

Others examples of injecting vocab URIs


1. SeaDataNet CF Profile

- Specifies minimum info content as attributes: sdn_parameter_urn ,
 sdn_parameter_name, sdn_uom_urn, sdn_uom_name
- Binding to NERC P01 (parameters), P06 (units) vocabulary collections
- 2. <u>netCDF-U uncertainty URIs</u> (Bigagli & Nativi 2013)
 - Use of "ref" attribute for uncertainty concept URI, further references using ancillary_variables
- 3. Use of flags to encode URIs for categorical data
- Use of flag_namespace attribute to give vocab URI prefix to values in flag_meanings

It's already happening out in the community! Should we co-ordinate how we do this?


#2: netCDF-LD ... Apply JSON-LD pattern

Note: Not yet tested - more a thought experiment...

netCDF-LD: Linkifying netCDF

Note: Not yet tested - more a thought experiment...

netCDF-LD: Global Attributes

:context-datatype = "http://www.w3.org/1999/02 /22-rdf-syntax-ns#datatype";

:context-vocab = "http://def.seegrid.csiro.au
/isotc211/iso19156/2011/observation#";

24

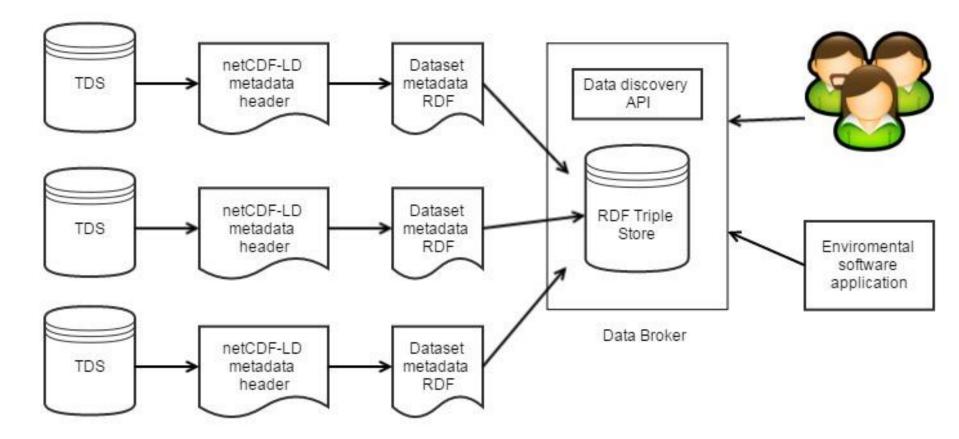
Assigning URIs to variable level attributes

```
z:units = "meters";
z:units_ref = "http://qudt.org/vocab/unit#Meter";
z:a =
"http://environment.data.gov.au/def/op#quantityKind";
z:dcPartOf = "http://foo.bar/linked_netCDF_example";
z:valid_range = 0., 5000.;
```


netCDF-LD to RDF

@prefix unit: <<u>http://qudt.org/vocab/unit#</u>> .
@prefix qudt: <<u>http://qudt.org/1.1/schema/qudt#</u>> .
@prefix op: <<u>http://environment.data.gov.au/def/op#</u>> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix dcterms: <<u>http://purl.org/dc/terms/</u>> .
@prefix xsd: <<u>http://www.w3.org/2001/XMLSchema#</u>> .

_:z qudt:unit unit:Meter;


a op:ScaledQuantityKind;

dcterms:isPartOf <<u>http://foo.bar/linked_netCDF_example</u>>.

Note: Not yet tested - more a thought experiment...

Use of netCDF-LD to support Data Discovery

Yu, J., Car, N. J., Leadbetter, A., Simons, B. A., & Cox, S. J. (2015). Towards linked data conventions for delivery of environmental data using netCDF. In *Environmental Software Systems*. *Infrastructures, Services and Applications* (pp. 102-112). Springer International Publishing. <u>https://dx.doi.org/10.1007/978-3-319-15994-2_9</u>

#3: BALD (Binary Array LD)

Linked Data Conventions for netCDF, HDF, ...

https://github.com/binary-array-ld/bald

http://binary-array-ld.net/latest

http://binary-array-ld.net/latest?classView=true

https://github.com/binary-array-ld/bald/issues

#3: BALD (Binary Array LD)

#2 prefix identification

#3 prefix container

validation - do URIs resolve? - are array references consistent?

Aim: create an RDF graph of the metadata within a file (collection of files)

Identifying a file is an interesting question: OpenDAP presents an interesting angle on this

Discussion: Value for this community (and broader) and draft use cases

Does the community see value in a Linked Data profile/convention for netCDF? Part of netCDF-CF?

- General consensus
- Acceptable to reference external resources?

What are the use cases?

Spend some time drafting use cases

Draft use cases

Discovery

Use

- Machine readable content
- DOI for a dataset create links for a URI

Encoding

- help data providers reference external sources
- reference features (geoms, stations, platform, instrument, sensor)

Compliance checking

 help data providers check conventions bound - e.g. practice of 1 or more conventions

```
cf__standard_name = cf__air_temp
ereefs__quantity = wq__
```

Options:

cf namespace default mixed with other conventions

standard_name = "xxx"

acdd___

Challenges

- Wary of introducing XML-ism into netCDF
 - Perhaps have default namespaces for each convention
 - People like netCDF because there's no namespace
 - not as elegant
 - alternatives for specifying LD using '@' to prefix incl. standard_name?

Governance of prefix namespace

- falls under unidata?
- governance of other namespace

Persistence of URIs -

- injecting fragility
- already exists references to convention documentation
- doi?

Principles

- Doesn't break classic CF Backwards compatible
- Prefer elegance of classic CF
- Forward looking approach

Benefits

• able to pull in content from external sources e.g. labels, features/geometries?

Draft a plan for activities to engineer prototype(s), test and validate against use cases

- 1. What would we need to make this work? Examples, qualified use cases from existing projects/data, endorsement?
- principles (see prev slide)
- project use cases
- endorsement CF/ACDD/CMIP (conventions level) or netCDF (at an API level)?
- 2. What would an activity look like?
- github
- test BALD software on github
- 3. How do we organise it? Next steps and timeframes
- 6 months, propose monthly telecon in this period
- github

Participation

- contribute use cases, test cases from projects
 - e.g. features, grid specs, ship track
 - netcdf groups?
- monthly telecons
- github code and issue tracker

Thank you

UK Met Office

Mark Hedley

[insert title]

- t [phone?]
- e mark.hedley@metoffice.gov.uk

CSIRO Land and Water

Jonathan Yu

Research Software Engineer

- t +61 3 9252 6440
- e jonathan.yu@csiro.au

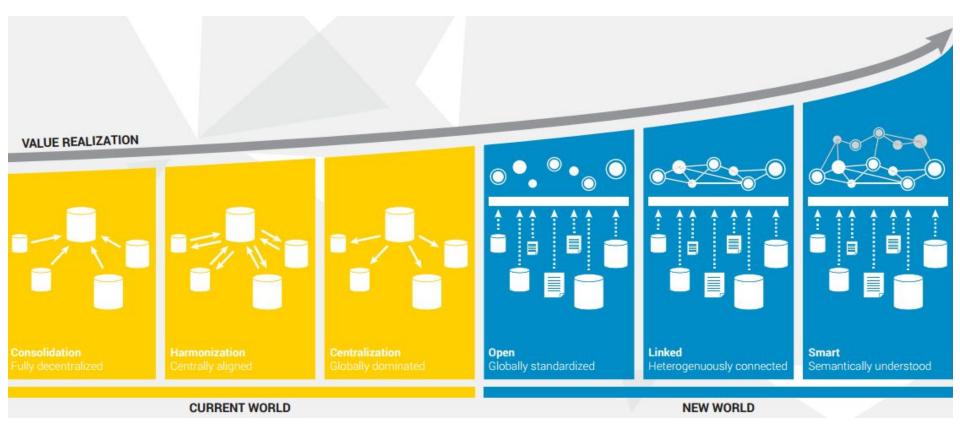
Linked Data principles

- 1. Use URIs as names for things.
- 2. Use HTTP URIs, so that people can look up those names.
- 3. When someone looks up a URI, provide useful information, using the standards (RDF, SPARQL).
- 4. Include links to other URIs, so that they can discover more things.

5 stars of Linked Open Data

make your stuff available on the web (whatever format)

- make it available as structured data (e.g. excel instead of image scan of a table)
- $\star \star \star$ non-proprietary format (e.g. csv instead of excel)


 $\star \star \star \star$ use URLs to identify things, so that people can point at your stuff

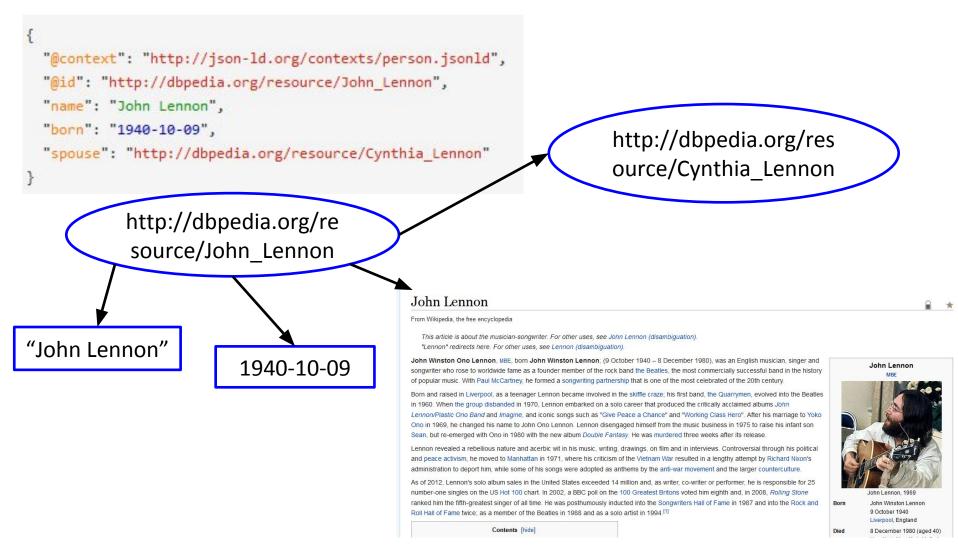
netCDF(-CF) online

netCDF(-CF) online + additional context - links to standardised vocab URLs e.g. NERC vocabs, QUDT, Observable Properties vocabs, CF standard name URLs online, DBPedia URLs

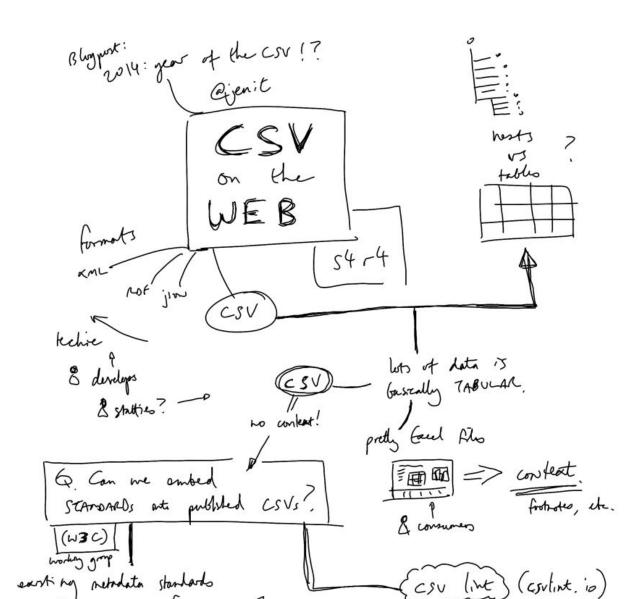
- \star \star \star \star link your data to other people's data to provide
 - ★ context

http://5stardata.info http://inkdroid.org/2010/06/04/the-5-stars-of-open-linked-data/

http://www.fireflyim.com/docs/smart_enterprise_data.pdf

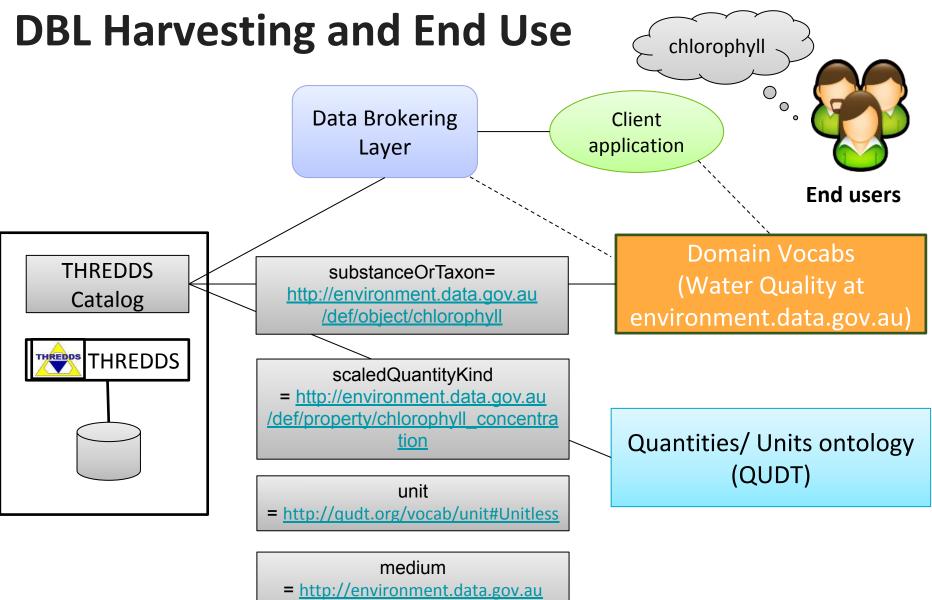

Break up components in standard_name into multiple attributes – ref (Yu et al. 2014)

```
float Nap MIM(time, latitude, longitude) ;
  Nap MIM: FillValue = -999.f ;
  Nap MIM:long name = "TSS, MIM SVDC on Rrs" ;
  Nap MIM: units = "mg/L" ;
  Nap MIM: valid min = 0.01209607f ;
  Nap MIM: valid max = 226.9626f ;
  Nap MIM:scaledQuantityKind id
"http://environment.data.gov.au/water/quality/def/property/solids-total suspend
ed" ;
  Nap MIM: unit id =
"http://environment.data.gov.au/water/quality/def/unit/MilliGramsPerLitre" ;
  Nap MIM: substanceOrTaxon id =
"http://environment.data.gov.au/water/quality/def/object/solids";
  Nap MIM: medium id =
"http://environment.data.gov.au/water/quality/def/object/ocean"
  Nap MIM:procedure id = "http://data.ereefs.org.au/ocean-colour/MIM SVDC RRS"
;
```

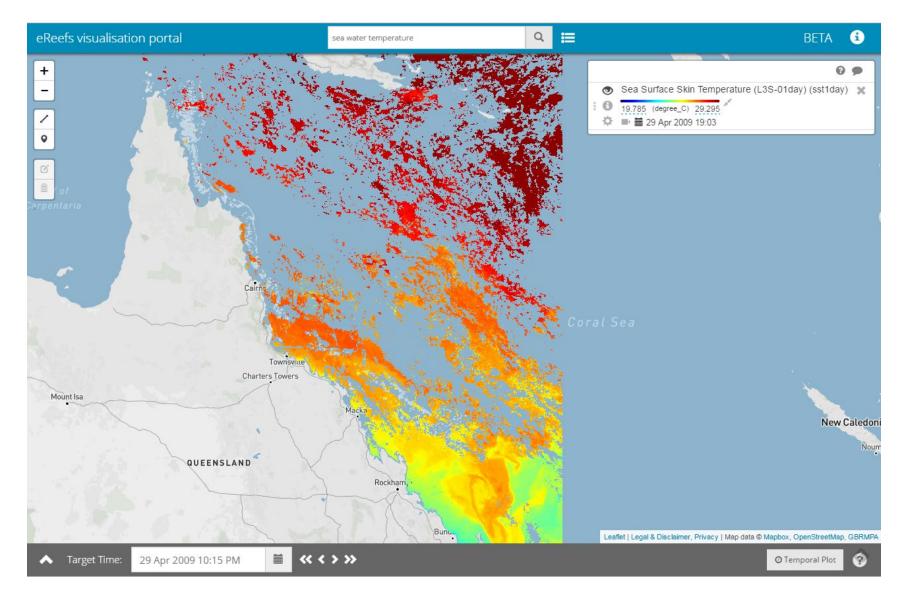

JSON-LD

```
"name": "John Lennon",
                                                          JSON-LD
 "born": "1940-10-09",
                                                          Decorators
"spouse":
"http://dbpedia.org/resource/Cynthia Lennon"
          "@context": "http://json-ld.org/contexts/person.jsonld",
          "@id": "http://dbpedia.org/resource/John_Lennon",
          "name": "John Lennon",
          "born": "1940-10-09",
          "spouse": "http://dbpedia.org/resource/Cynthia_Lennon"
```

JSON-LD and Semantic Web


CSV-on-the-web

Linked data for CSV tabular data


Add context to tables via metadata file

Use cases: documentation, validation, transformation (e.g. RDF, JSON, XML...), annotate semantics, enhanced discovery

/def/feature/ocean

eReefs visualisation portal

5 results found for

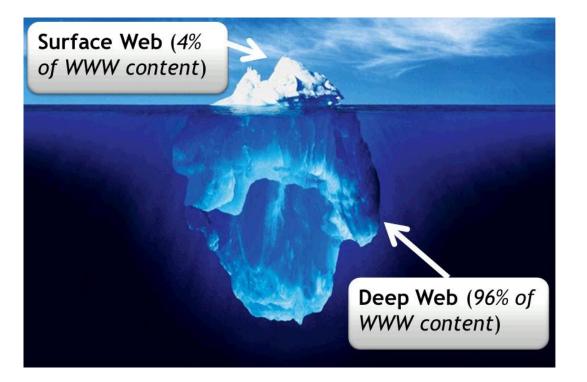
sea water temperature

Q ☷

http://environment.data.gov.au/def/property/sea_water_temperature

Sea Surface Skin T SaltWater	Cemperature (L3S-01d	lay) - "sst1day" 👝 时 🧭 🧭
sea water temperature	BOM ReefTemp2 daily SST "	'sst1day" OceanRegion
SeaWater		
Data label: Sea Surface Skin Temperature (L3S-01day)		Data description: Sea Surface Skin Temperature (L3S-01day)
Dataset: BOM ReefTemp2 daily SST		Data owner: Bureau of Metereology Climate Water Division
Data node: Bureau of Meteorology node for eReefs		Service: Bureau of Meteorology eReefs Marine Water Quality Dashboard Services
Quantity: sea water temperature		Feature: OceanRegion
Medium: SeaWater		
Date range: 19 Dec	2001 to 16 Mar 2016	
Available web serv	ices:	
OPENDAP WMS WCS NetcdfSubset	http://ereeftds.bom.gov.au/ereefs/tds/dodsC/ereefs/RT2_gridAgg_P1D_SST http://ereeftds.bom.gov.au/ereefs/tds/wms/ereefs/RT2_gridAgg_P1D_SST http://ereeftds.bom.gov.au/ereefs/tds/wcs/ereefs/RT2_gridAgg_P1D_SST http://ereeftds.bom.gov.au/ereefs/tds/ncss/grid/ereefs/RT2_gridAgg_P1D_SS T	
Full DBL result for this da	ta product	

Summary of approach #1: injecting vocab URIs


Various communities are developing approaches to add context and semantics to complement netCDF-CF.

Clearly, there are use cases for adding more semantics to current netCDF-CF metadata specifications.

Approaches are currently fragmented.

Would benefit from agreement and common approaches to profile.

Deep (or invisible) web

400-500x more public information than the Surface Web

1000-2000x greater quality than Surface Web

95% Deep Web is publicly accessible

Deep Web tend to be narrower, with deeper content

netCDF (scientific) data part of this Deep Web?